【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以O(shè)A為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當(dāng)BC=2時,求AC的長.
【答案】(1)證明見試題解析;(2)4.
【解析】
試題分析:(1)連接DE,根據(jù)圓周角定理求得∠ADE=90°,得出∠ADE=∠ABC,進而證得△ADE∽△ABC,根據(jù)相似三角形對應(yīng)邊成比例即可求得結(jié)論;
(2)連接OD,根據(jù)切線的性質(zhì)求得OD⊥BD,在RT△OBD中,根據(jù)已知求得∠OBD=30°,進而求得∠BAC=30°,根據(jù)30°的直角三角形的性質(zhì)即可求得AC的長.
試題解析:(1)連接DE,∵AE是直徑,∴∠ADE=90°,∴∠ADE=∠ABC,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴ACAD=ABAE;
(2)解:連接OD,∵BD是⊙O的切線,∴OD⊥BD,在RT△OBD中,OE=BE=OD,∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在RT△ABC中,AC=2BC=2×2=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年國家將擴大公共場所免費上網(wǎng)范圍,某小區(qū)響應(yīng)號召調(diào)查小區(qū)居民上網(wǎng)費用情況,隨機抽查了30戶家庭的月上網(wǎng)費用,結(jié)果如表
月網(wǎng)費(元) | 50 | 100 | 150 |
戶數(shù)(人) | 15 | 12 | 3 |
則關(guān)于這30戶家庭的月上網(wǎng)費用,中位數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線.
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】200粒大米重約4克,如果每人每天浪費1粒米,那么約458萬人口的漳州市每天浪費大米用科學(xué)記數(shù)法表示約為( 。
A.9.16×103克B.9.16×104克C.9,16×105克D.0.916×105克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以ABCO的頂點O為原點,邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點A、C的坐標(biāo)分別是(2,4)、(3,0),過點A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AD平分∠BAC,AB=AC,連結(jié)BD、CD并延長分別交AC、AB于F、E點,則此圖中全等三角形的對數(shù)為( )
A.2對
B.3對
C.4對
D.5對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com