【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合)我們把這樣的兩拋物線L1、L2互稱為友好拋物線,可見一條拋物線的友好拋物線可以有很多條.

1)如圖2,已知拋物線L3y=2x2-8x+4y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的對(duì)稱點(diǎn)D的坐標(biāo);

2)請(qǐng)求出以點(diǎn)D為頂點(diǎn)的L3友好拋物線L4的解析式,并指出L3L4y同時(shí)隨x增大而增大的自變量的取值范圍;

3)若拋物y=a1x-m2+n的任意一條友好拋物線的解析式為y=a2x-h2+k,請(qǐng)寫出a1a2的關(guān)系式,并說明理由.

【答案】1)(4,4);(22≤x≤4;(3a1=-a2,理由如下:見解析

【解析】

1)設(shè)x0,求出y的值,即可得到C的坐標(biāo),把拋物線L3y2x28x4配方即可得到拋物線的對(duì)稱軸,由此可求出點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的對(duì)稱點(diǎn)D的坐標(biāo);

2)由(1)可知點(diǎn)D的坐標(biāo)為(44),再由條件以點(diǎn)D為頂點(diǎn)的L3友好拋物線L4的解析式,可求出L4的解析式,進(jìn)而可求出L3L4y同時(shí)隨x增大而增大的自變量的取值范圍;

3)根據(jù):拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上,可以列出兩個(gè)方程,相加可得:(a1a2)(mh20,可得a1a2.

解:(1)∵拋物線L3y=2x2-8x+4

y=2x-22-4,

∴頂點(diǎn)為(24),對(duì)稱軸為x=2

設(shè)x=0,則y=4,

C0,4),

∴點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的對(duì)稱點(diǎn)D的坐標(biāo)為:(44);

2)∵以點(diǎn)D44)為頂點(diǎn)的拋物線L4過點(diǎn)(2,-4),

設(shè)L4的解析式,

將點(diǎn)(2-4)代入L4可得,a=-2,

L4的解析式為y=-2x-42+4,

L3L4的兩個(gè)交點(diǎn)分別為(4,4)和(2-4

L3L4y同時(shí)隨x增大而增大的自變量的取值范圍是:2≤x≤4時(shí);

3a1=-a2,

理由如下:

∵拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上,

∴可以列出兩個(gè)方程,

+②得:(a1+a2)(m-h2=0,

a1=-a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組用高為1.2米的測(cè)角儀測(cè)量小樹AB的高度,如圖,在距AB一定距離的F處測(cè)得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時(shí),又測(cè)得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數(shù)據(jù):sin27°=0.45,cos27°=0.89,tan27°=0.5sin50°=0.77,cos50°=0.64,tan50°=1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個(gè)班級(jí),發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)該班共有   名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為   ;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對(duì)D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動(dòng),請(qǐng)你估計(jì)該校將有多少名留守學(xué)生在此關(guān)愛活動(dòng)中受益?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,OEOF

1)求證:BOE≌△DOF;

2)若BDEF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y圖象上一點(diǎn),過點(diǎn)Ax軸的平行線交反比例函數(shù)y=﹣的圖象于點(diǎn)B,點(diǎn)Cx軸上,且SABC,則k=( 。

A. 6B. 6C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段 AB 經(jīng)過⊙O 的圓心, AC , BD 分別與⊙O 相切于點(diǎn) C ,D .若 AC =BD = 4 ,∠A=45°,則弧CD的長(zhǎng)度為(

A.πB.2πC.2πD.4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD 中,對(duì)角線 AC BD 相交于點(diǎn) O ,點(diǎn) E F 分別為 OB , OD 的中點(diǎn),延長(zhǎng) AE G ,使 EG AE ,連接 CG

1)求證: ABE≌△CDF

2)當(dāng) AB AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)學(xué)生會(huì)在開展厲行勤儉節(jié)約,反對(duì)鋪張浪費(fèi)的主題教育活動(dòng)中,在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生就某日晚飯浪費(fèi)飯菜情況進(jìn)行調(diào)查,調(diào)查內(nèi)容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學(xué)生會(huì)根據(jù)統(tǒng)計(jì)結(jié)果,繪制了如下統(tǒng)計(jì)表:根據(jù)所給信息,回答下列問題:

選項(xiàng)

頻數(shù)

頻率

A

36

m

B

n

0.2

C

6

0.1

D

6

0.1

(1)統(tǒng)計(jì)表中:m=______;n=______

(2)該中學(xué)有1800名學(xué)生晚飯?jiān)谛>筒,根?jù)調(diào)查結(jié)果,估計(jì)當(dāng)天晚飯有多少人能夠把飯和菜全部吃完?

(3)為了對(duì)同學(xué)們浪費(fèi)的行為進(jìn)行糾正,校學(xué)生會(huì)從飯和菜都有剩的甲、乙、丙、丁四名同學(xué)中任取2位同學(xué)進(jìn)行批評(píng)教育,請(qǐng)用列表法或樹狀圖法求恰好抽到甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°.小聰同學(xué)利用直尺和圓規(guī)完成了如下作圖:

①分別以點(diǎn)A,B為圓心,以大于AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)M,N,過點(diǎn)M,N作直線與AB交于點(diǎn)D

②連接CD,以點(diǎn)D為圓心,以一定長(zhǎng)為半徑畫弧,交MN于點(diǎn)E,交CD于點(diǎn)F,以點(diǎn)C為圓心,以同樣定長(zhǎng)為半徑畫弧,與CD交于點(diǎn)G,以點(diǎn)G為圓心,以EF長(zhǎng)為半徑畫弧與前弧交于點(diǎn)H.作射線CHAB交于點(diǎn)K,請(qǐng)根據(jù)以上操作,解答下列問題

1)由尺規(guī)作圖可知:直線MN是線段AB   線,∠DCK   

2)若CD5,AK2,求CK的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案