【題目】數(shù)學(xué)課上小明用一副三角板進(jìn)行如下操作:把一副三角板中兩個(gè)直角的頂點(diǎn)重合,一個(gè)三角板固定不動(dòng),另一個(gè)三角板繞著重合的頂點(diǎn)旋轉(zhuǎn)(兩個(gè)三角板始終有重合部分).
(1)當(dāng)旋轉(zhuǎn)到如圖所示的位置時(shí),量出∠α=25°,通過(guò)計(jì)算得出∠AOD=∠BOC= ;
(2)通過(guò)幾次操作小明發(fā)現(xiàn),∠α≠25°時(shí).∠AOD=∠BOC仍然成立,請(qǐng)你幫他完成下面的說(shuō)理過(guò)程.
理由:因?yàn)椤?/span>AOC=∠BOD= ;
所以,根據(jù)等式的基本性質(zhì)∠ ﹣∠COD=∠BOD﹣∠ ;
即∠AOD=∠ .
(3)小瑩還發(fā)現(xiàn)在旋轉(zhuǎn)過(guò)程中∠AOB和∠DOC之間存在一個(gè)不變的數(shù)量關(guān)系,請(qǐng)你用等式表示這個(gè)數(shù)量關(guān)系 .
【答案】(1)65°;(2)90°,AOC,COD,BOC;(3)∠AOB+∠COD=180°.
【解析】
(1)根據(jù)角的和差即可得到結(jié)論;
(2)根據(jù)等式的基本性質(zhì)即可得到結(jié)論;
(3)根據(jù)角的和差和補(bǔ)角的定義即可得到結(jié)論.
解:(1)∵∠AOC=∠BOD=90°,
∴∠AOD=∠BOC=90°﹣α=90°﹣25°=65°;
(2)因?yàn)椤?/span>AOC=∠BOD=90°,
所以,根據(jù)等式的基本性質(zhì)∠AOC﹣∠COD=∠BOD﹣∠COD,
即∠AOD=∠BOC;
(3)∵∠COD=∠AOC﹣∠AOD=90°﹣∠AOD,∠AOB=∠BOD+∠AOD=90°+∠AOD,
∴∠AOB+∠COD=90°+∠AOD+90°﹣∠AOD=180°.
故答案為:(1)65°;(2)90°,AOC,COD,BOC;(3)∠AOB+∠COD=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)場(chǎng)學(xué)習(xí)題:
問(wèn)題背景:
在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫(xiě)在橫線上. .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC三邊的長(zhǎng)分別為a,2a、a(a>0),請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC,并求出它的面積是: .
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為、、(m>0,n>0,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫(huà)出示意圖,并求出△ABC的面積為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點(diǎn)A,經(jīng)過(guò)點(diǎn)A的拋物線y=ax2﹣3x+c的對(duì)稱(chēng)軸是x=.
(1)求拋物線的解析式;
(2)平移直線l經(jīng)過(guò)原點(diǎn)O,得到直線m,點(diǎn)P是直線m上任意一點(diǎn),PB⊥x軸于點(diǎn)B,PC⊥y軸于點(diǎn)C,若點(diǎn)E在線段OB上,點(diǎn)F在線段OC的延長(zhǎng)線上,連接PE,PF,且PE=3PF.求證:PE⊥PF;
(3)若(2)中的點(diǎn)P坐標(biāo)為(6,2),點(diǎn)E是x軸上的點(diǎn),點(diǎn)F是y軸上的點(diǎn),當(dāng)PE⊥PF時(shí),拋物線上是否存在點(diǎn)Q,使四邊形PEQF是矩形?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.
(1)求的面積;
(2)如果要使與全等,那么點(diǎn)的坐標(biāo)是多少?
(3)求的邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問(wèn)題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是 ;
(2)乙家庭沒(méi)有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列小金魚(yú)圖案是用長(zhǎng)度相同的小木棒按一定規(guī)律拼搭而成,第一條小金魚(yú)圖案需8根小木棒,第二條小金魚(yú)圖案需14根小木棒,…,按此規(guī)律,
(1)第n條小金魚(yú)圖案需要小木棒 根;
(2)如果有30000根小木棒,按照如圖所示拼搭第1條,第2條……,直到第100條金魚(yú),請(qǐng)通過(guò)計(jì)算說(shuō)明這些木棒是否夠用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別為30°、45°,如果此時(shí)熱氣球C處的高度為200米,點(diǎn)A、B、C在同一直線上,則AB兩點(diǎn)間的距離是________米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是的外角平分線上一點(diǎn),且滿足,過(guò)點(diǎn)作于點(diǎn),交的延長(zhǎng)線于點(diǎn),則下列結(jié)論:①;②;③;④.
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com