【題目】觀察下列等式:,,,,…,則第8個等式是__________

【答案】

【解析】

通過觀察類比總結(jié)出通用規(guī)律,兩個根式相等,第一個根式里面是整數(shù)加分數(shù),第二個根式里面是分數(shù),根式外面為整數(shù),發(fā)現(xiàn)等式兩邊的整數(shù)和分數(shù)之間的關(guān)系,即可求解.

第一個等式為,通過觀察可得,等式兩邊都有整數(shù)和分數(shù),分數(shù)相同,等式左邊整數(shù)比右邊整式大1,且等式左邊整數(shù)在根式里面與分數(shù)相加,等式右邊整式在根式外面與根式相乘.

第二個等式為,特點跟第一個等式一樣,還發(fā)現(xiàn)等式左邊的整數(shù)與第幾個等式有關(guān),第幾個等式則整數(shù)就是幾,且分數(shù)的分子都為1,分母比整數(shù)大2.

第三個等式為,第四個等式為,其特點跟第一個等式和第二個等式一樣,進一步驗證了這個特點.

則第n個等式應該為:

所以第8個等式為:

即為

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,AC=12,經(jīng)過點C且與AB邊相切的動圓與BC、CA分別相交于點M、N,則線段MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別是AB、DC邊上的點,且AE=CF,

(1)求證:△ADE≌△CBF.
(2)若∠DEB=90°,求證:四邊形DEBF是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一水池放水,先用一臺抽水機工作一段時間后停止,然后再調(diào)來一臺同型號抽水機,兩臺抽水機同時工作直到抽干.設從開始工作的時間為,剩下的水量為.下面能反映之間的關(guān)系的大致圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學校.以下是他本次上學所用的時間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

1)小明家到學校的路程是 米.

2)小明在書店停留了 分鐘.

3)本次上學途中,小明一共行駛了 米.一共用了 分鐘.

4)我們認為騎單車的速度超過 300 /分就超過了安全限度.問:在整個上學途中哪個時間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖長方形的位置如圖所示,點的坐標為,點從點出發(fā)向點移動,速度為每秒個單位;點同時從點出發(fā)向點移動,速度為每秒個單位.

1)請寫出點的坐標.

2)經(jīng)過幾秒后,、兩點與原點距離相等.

3)在點移動過程中,四邊形的面積有何變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設計的“作邊上的高線”的尺規(guī)作圖過程.

已知:.

求作:邊上的高線.

作法:如圖,

①以點為圓心,的長為半徑作弧,以點為圓心,的長為半徑作弧,兩弧在下方交于點;

②連接于點.

所以線段邊上的高線.

根據(jù)小東設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵    ,

∴點分別在線段的垂直平分線上(  )(填推理的依據(jù)).

垂直平分線段.

∴線段邊上的高線.

查看答案和解析>>

同步練習冊答案