【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知∠ABC=60°,EF⊥AB,垂足為F,連接DF.
(1)求證:△ABC≌△EAF;
(2)試判斷四邊形EFDA的形狀,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)四邊形EFDA是平行四邊形.
【解析】
試題分析:(1)由△ABE是等邊三角形可知:AE=BE,∠EAF=60°,于是可得到∠EFA=∠ACB,∠EAF=∠ABC,接下來依據(jù)AAS證明△ABC≌△EAF即可;
(2)由△ABC≌△EAF可得到EF=AC,由△ACD是的等邊三角形進(jìn)而可證明AC=AD,然互再證明∠BAD=90°,可證明EF∥AD,故此可得到四邊形EFDA為平行四邊形.
試題解析:(1)證明:∵△ABE是等邊三角形,EF⊥AB,∴∠EAF=60°,AE=BE,∠EFA=90°.
又∵∠ACB=90°,∠ABC=60°,∴∠EFA=∠ACB,∠EAF=∠ABC.
在△ABC和△EAF中,∵∠EFA=∠ACB,∠EAF=∠ABC,AE=BE,∴△ABC≌△EAF.
(2)結(jié)論:四邊形EFDA是平行四邊形.
理由:∵△ABC≌△EAF,∴EF=AC.∵△ACD是的等邊三角形,∴AC=AD,∠CAD=60°,∴AD=EF.又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四邊形EFDA是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列等式成立的是( 。
A.(a2)3=a6
B.2a2-3a=-a
C.a6÷a3=a2
D.(a+4)(a-4)=a2-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的兩邊長(zhǎng)為3和7,則該等腰三角形的周長(zhǎng)為( )
A.10
B.13
C.17
D.13或17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)男生的身高情況,隨機(jī)抽取若干名男生進(jìn)行身高測(cè)量,將所得到的數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖),圖中從左到右依次為第1,2,3,4,5組.
(1)求抽取了多少名男生測(cè)量身高?
(2)身高在哪個(gè)范圍內(nèi)的男生人數(shù)最多?(答出是第幾小組即可)
(3)若該中學(xué)有300名男生,請(qǐng)估計(jì)身高為170cm及170cm以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OM⊥AB,NO⊥CD,∠1= ∠BOC.
(1)求∠1的大;
(2)求∠BON的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿BD對(duì)折,點(diǎn)A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠BAC、∠ABC的平分線相交于點(diǎn)D,DE⊥BC,DF⊥AC,垂足分別為E、F.問四邊形CFDE是正方形嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2-2x+3的圖象的頂點(diǎn)坐標(biāo)是 ( )
A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com