【題目】如圖,正方形ABCD的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)Cy軸的正半軸上,點(diǎn)B在雙曲線x0)上,點(diǎn)D在雙曲線x0)上,點(diǎn)D的坐標(biāo)是 3,3

1)求k的值;

2)求點(diǎn)A和點(diǎn)C的坐標(biāo).

【答案】(1)k=9,(2)A(1,0), C(0,5).

【解析】

(1)根據(jù)反比例函數(shù)過(guò)點(diǎn)D,將坐標(biāo)代入即可求值,(2)利用全等三角形的性質(zhì),計(jì)算AM,AN,CH的長(zhǎng)即可解題.

解:將點(diǎn)D代入中,

解得:k=9,

(2)過(guò)點(diǎn)B作BN⊥x軸于N, 過(guò)點(diǎn)DDM⊥x軸于M,

四邊形ABCD是正方形,

∴∠BAD=90°,AB=AD,

∵∠BAN+∠ABN=90°,

∴∠BAN=∠ADM,

∴△ABN≌△DAM(AAS),

∴DM=AN=3,

設(shè)A(a,0),

∴N(a-3,0),

∵B 上,

∴BN==AM,

∵OM=a=3,整理得:a2-6a+5=0,

解得a=1或a=5(舍去),

經(jīng)檢驗(yàn),a=1是原方程的根,

∴A(1,0),

過(guò)點(diǎn)D作DH⊥Y軸于H,

同理可證明△DHC≌△DMA,

∴CH=AM=2,

∴C(0,5),

綜上, A(1,0), C(0,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,九(1)班課外活動(dòng)小組利用標(biāo)桿測(cè)量學(xué)校旗桿的高度,已知標(biāo)桿高度CD=3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標(biāo)桿CD的水平距離DF=2m,人的眼睛E、標(biāo)桿頂點(diǎn)C和旗桿頂點(diǎn)A在同一直線,求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.

求證:DAE≌△DCF;

求證:ABG∽△CFG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,過(guò)點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+8AB兩點(diǎn),若反比例函數(shù)y(x0)的圖象與△ABC有公共點(diǎn),則k的取值范圍是(  )

A. 2k12 B. 2k7 C. 7k12 D. 2k16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張正方形紙片ABCD對(duì)折,使CDAB重合,得到折痕MN后展開(kāi),ECN上一點(diǎn),將△CDE沿DE所在的直線折疊,使得點(diǎn)C落在折痕MN上的點(diǎn)F處,連接AF,BF,BD.則下列結(jié)論中:①△ADF是等邊三角形;②tan∠EBF=2-;③SADFS正方形ABCD;④BF2DF·EF.其中正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開(kāi)始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計(jì)車費(fèi)

0

0.5

0.9

1.5

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫(xiě)出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利? 說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直角梯形OABC中,CBOA,對(duì)角線OBAC交于點(diǎn)D,OC=2CB=2,OA=4,點(diǎn)P為對(duì)角線CA上的一點(diǎn),過(guò)點(diǎn)PQHOAH,交CB的延長(zhǎng)線于點(diǎn)Q,連接BP,如果BPQPHA相似,則點(diǎn)P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,CAB=90°ADBC于點(diǎn)D,點(diǎn)EAB的中點(diǎn),ECAD交于點(diǎn)G,點(diǎn)FBC上.

1)如圖1ACAB=12,EFCB,求證:EF=CD

2)如圖2,ACAB=1EFCE,求EFEG的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案