【題目】如圖,在平面直角坐標(biāo)系中,已知點A(5,3),點B(﹣3,3),過點A的直線y=x+m(m為常數(shù))與直線x=1交于點P,與x軸交于點C,直線BP與x軸交于點D.
(1)求點P的坐標(biāo);
(2)求直線BP的解析式,并直接寫出△PCD與△PAB的面積比;
(3)若反比例函數(shù)(k為常數(shù)且k≠0)的圖象與線段BD有公共點時,請直接寫出k的最大值或最小值.
【答案】(1)P(1,1); (2) ;(3)當(dāng)k<0時,最小值為-9;當(dāng)k>0時,最大值為
【解析】
試題把點坐標(biāo)代入一次函數(shù),求得的值,進而求得點的坐標(biāo).
用待定系數(shù)法即可求得直線的解析式,直接計算面積即可求出它們的比值.
分成和兩種情況進行討論.
試題解析:(1)∵過點A(5,3),
解得:
∴y=,
當(dāng)時,∴,
∴
(2)設(shè)直線BP的解析式為y=ax+b,
根據(jù)題意,得
解得:
∴直線BP的解析式為,
點
(3)當(dāng)時,經(jīng)過點時,有最小值為-9;
當(dāng)時,聯(lián)立方程 整理得,
解得:
即最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第33個國際禁毒日到來之際,貴陽市策劃了以“健康人生綠色無毒”為主題的禁毒宣傳月活動,某班開展了此項活動的知識競賽.學(xué)習(xí)委員為班級購買獎品后與生活委員對話如下:
(1)請用方程的知識幫助學(xué)習(xí)委員計算一下,為什么說學(xué)習(xí)委員搞錯了;
(2)學(xué)習(xí)委員連忙拿出發(fā)票,發(fā)現(xiàn)的確錯了,因為他還買了一本筆記本,但筆記本的單價已模糊不清,只能辨認出單價是小于10元的整數(shù),那么筆記本的單價可能是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB和△ACD均為正三角形,且頂點B、D均在雙曲線(x>0)上,若圖中S△OBP=4,則k的值為( )
A.B.-C.-4D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對稱軸如圖所示,且拋物線過點C(0,c).
(1)當(dāng)c=﹣3時,點(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;
(2)若拋物線與x軸有兩個交點,自左向右分別為點A、B,且OA=OB,求拋物線的解析式;
(3)當(dāng)﹣1<x<0時,拋物線與x軸有且只有一個公共點,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,2×2網(wǎng)格(每個小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個格點.拋物線l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).
(1)n為奇數(shù),且l經(jīng)過點H(0,1)和C(2,1),求b,c的值,并直接寫出哪個格點是該拋物線上的頂點;
(2)n為偶數(shù),且l經(jīng)過點A(1, 0)和B(2,0),通過計算說明點F(0,2)和H(0,1)是否在拋物線上;
(3)若l經(jīng)過這九個格點中的三個,直接寫出滿足這樣條件的拋物線條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段,下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
跳遠(米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
跳繩(次) | 63 | 75 | 60 | 63 | 72 | 70 | 65 |
在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( 。
A.5號學(xué)生進入30秒跳繩決賽
B.2號學(xué)生進入30秒跳繩決賽
C.8號學(xué)生進入30秒跳繩決賽
D.9號學(xué)生進入30秒跳繩決賽
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
類別 | A | B | C | D | E |
節(jié)目類型 | 新聞 | 體育 | 動畫 | 娛樂 | 戲曲 |
人數(shù) | 12 | 30 | m | 54 | 9 |
請你根據(jù)以上的信息,回答下列問題:
(1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有 人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %.
(2)被調(diào)查學(xué)生的總數(shù)為 人,統(tǒng)計表中m的值為 ,統(tǒng)計圖中n的值為 .
(3)在統(tǒng)計圖中,E類所對應(yīng)扇形圓心角的度數(shù)為 .
(4)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校最喜愛新聞節(jié)目的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮在學(xué)習(xí)中遇到這樣一個問題:
如圖,點是弧上一動點,線段點是線段的中點,過點作,交的延長線于點.當(dāng)為等腰三角形時,求線段的長度.
小亮分析發(fā)現(xiàn),此問題很難通過常規(guī)的推理計算徹底解決,于是嘗試結(jié)合學(xué)習(xí)函數(shù)的經(jīng)驗研究此問題,請將下面的探究過程補充完整:
根據(jù)點在弧上的不同位置,畫出相應(yīng)的圖形,測量線段的長度,得到下表的幾組對應(yīng)值.
操作中發(fā)現(xiàn):
①"當(dāng)點為弧的中點時, ".則上中的值是
②"線段的長度無需測量即可得到".請簡要說明理由;
將線段的長度作為自變量和的長度都是的函數(shù),分別記為和,并在平面直角坐標(biāo)系中畫出了函數(shù)的圖象,如圖所示.請在同一坐標(biāo)系中畫出函數(shù)的圖象;
繼續(xù)在同一坐標(biāo)系中畫出所需的函數(shù)圖象,并結(jié)合圖象直接寫出:當(dāng)為等腰三角形時,線段長度的近似值.(結(jié)果保留一位小數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com