【題目】如果把鐘表的時針在任一時刻所在的位置作為起始位置,那么時針旋轉(zhuǎn)出一個平角及一個周角,至少需要多長時間?

【答案】【解答】∵時針旋轉(zhuǎn)一小時轉(zhuǎn)動30°,
∴時針旋轉(zhuǎn)出一個平角需要6小時,時針旋轉(zhuǎn)出一個周角需要12小時.
【解析】利用時針每小時旋轉(zhuǎn)30°,進(jìn)而得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形(提示:正方形四邊相等,四個角都是90°

1)如圖1,點(diǎn)GBC邊上任意一點(diǎn)(不與點(diǎn)B、C重合),連接AG,作BFAG于點(diǎn)F,DEAG于點(diǎn)E

求證:ABF≌△DAE

2)直接寫出(1)中,線段EFAFBF的等量關(guān)系   ;

3①如圖2,若點(diǎn)GCD邊上任意一點(diǎn)(不與點(diǎn)C、D重合),連接AG,作BFAG于點(diǎn)FDEAG于點(diǎn)E,則圖中全等三角形是   ,線段EFAF、BF的等量關(guān)系是   ;

②如圖3,若點(diǎn)GCD延長線上任意一點(diǎn),連接AG,作BFAG于點(diǎn)F,DEAG于點(diǎn)E,線段EFAF、BF的等量關(guān)系是   ;

4)若點(diǎn)GBC延長線上任意一點(diǎn),連接AG,作BFAG于點(diǎn)F,DEAG于點(diǎn)E,請畫圖、探究線段EFAF、BF的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+n(k0)與二次函數(shù)y2=ax2+bx+c(a0)的圖象相交于A(﹣1,5)、B(9,2)兩點(diǎn),則關(guān)于x的不等式kx+nax2+bx+c的解集為( 。

A. ﹣1x9 B. ﹣1x9 C. ﹣1x9 D. x﹣1x9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)動形式屬于旋轉(zhuǎn)的是( 。
A.鐘表上鐘擺的擺動
B.投籃過程中球的運(yùn)動
C.“神十”火箭升空的運(yùn)動
D.傳動帶上物體位置的變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】相切兩圓的半徑分別是5和3,則該兩圓的圓心距是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+3上的三點(diǎn),則y1,y2,y3的大小關(guān)系為( 。

A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.

(1)求證:四邊形AECF是平行四邊形;

(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長線上時,且滿足BE=DF,上述結(jié)論仍然成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(滿分10分)如圖,直徑為ABO的兩條直角邊BC、CD于點(diǎn)E、F,且,連接BF.

1)求證CDO的切線;(2)當(dāng)CF=1D=30°時,求AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=-x2+(m-1)x+m與y軸交于點(diǎn)(0,3).

(1)求出m的值,并畫出這條拋物線;

(2)求拋物線與x軸的交點(diǎn)和頂點(diǎn)坐標(biāo);

(3)當(dāng)x取什么值時,拋物線在x軸上方?

(4)當(dāng)x取什么值時,y的值隨x的增大而減小.

查看答案和解析>>

同步練習(xí)冊答案