(2004•吉林)不等式2(x-2)≤x-2的非負(fù)整數(shù)解的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
【答案】分析:先求出不等式的解集,然后求其非負(fù)整數(shù)解.
解答:解:解不等式2(x-2)≤x-2得x≤2,
因而非負(fù)整數(shù)解是0,1,2共3個(gè).
故選C.
點(diǎn)評(píng):熟練掌握不等式的基本性質(zhì),正確求出不等式的解集,是解此題的關(guān)鍵.解不等式要用到不等式的性質(zhì):
(1)不等式的兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變;
(2)不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;
(3)不等式的兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•吉林)已知拋物線L:y=ax2+bx+c(其中a、b、c都不等于0),它的頂點(diǎn)P的坐標(biāo)是,與y軸的交點(diǎn)是M(0,c).我們稱以M為頂點(diǎn),對(duì)稱軸是y軸且過點(diǎn)P的拋物線為拋物線L的伴隨拋物線,直線PM為L(zhǎng)的伴隨直線.
(1)請(qǐng)直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的解析式:
伴隨拋物線的解析式 ______,伴隨直線的解析式 ______;
(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3,則這條拋物線的解析式是 ______;
(3)求拋物線L:y=ax2+bx+c(其中a、b、c都不等于0)的伴隨拋物線和伴隨直線的解析式;
(4)若拋物線L與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),x2>x1>0,它的伴隨拋物線與x軸交于C、D兩點(diǎn),且AB=CD.請(qǐng)求出a、b、c應(yīng)滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2004•吉林)如圖,大拇指與小拇指盡量張開時(shí),兩指尖的距離稱為指距.某項(xiàng)研究表明,一般情況下人的身高h(yuǎn)是指距d的一次函數(shù).下表是測(cè)得的指距與身高的一組數(shù)據(jù):
指距d(cm)20212223
身高h(yuǎn)(cm)160169178187
(1)求出h與d之間的函數(shù)關(guān)系式;(不要求寫出自變量d的取值范圍)
(2)某人身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•吉林)已知拋物線L:y=ax2+bx+c(其中a、b、c都不等于0),它的頂點(diǎn)P的坐標(biāo)是,與y軸的交點(diǎn)是M(0,c).我們稱以M為頂點(diǎn),對(duì)稱軸是y軸且過點(diǎn)P的拋物線為拋物線L的伴隨拋物線,直線PM為L(zhǎng)的伴隨直線.
(1)請(qǐng)直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的解析式:
伴隨拋物線的解析式 ______,伴隨直線的解析式 ______;
(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3,則這條拋物線的解析式是 ______;
(3)求拋物線L:y=ax2+bx+c(其中a、b、c都不等于0)的伴隨拋物線和伴隨直線的解析式;
(4)若拋物線L與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),x2>x1>0,它的伴隨拋物線與x軸交于C、D兩點(diǎn),且AB=CD.請(qǐng)求出a、b、c應(yīng)滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•吉林)如圖,大拇指與小拇指盡量張開時(shí),兩指尖的距離稱為指距.某項(xiàng)研究表明,一般情況下人的身高h(yuǎn)是指距d的一次函數(shù).下表是測(cè)得的指距與身高的一組數(shù)據(jù):
指距d(cm)20212223
身高h(yuǎn)(cm)160169178187
(1)求出h與d之間的函數(shù)關(guān)系式;(不要求寫出自變量d的取值范圍)
(2)某人身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)創(chuàng)新思維訓(xùn)練(二)(解析版) 題型:解答題

(2004•吉林)如圖,正方形ABCD的邊長(zhǎng)為12,劃分成12×12個(gè)小正方形格.將邊長(zhǎng)為n(n為整數(shù),且2≤n≤11)的黑白兩色正方形紙片按圖中的方式黑白相間地?cái)[放,第一張n×n的紙片正好蓋住正方形ABCD左上角的n×n個(gè)小正方形格,第二張紙片蓋住第一張紙片的部分恰好為(n-1)×(n-1)的正方形.如此擺放下去,最后直到紙片蓋住正方形ABCD的右下角為止.
請(qǐng)你認(rèn)真觀察思考后回答下列問題:
(1)由于正方形紙片邊長(zhǎng)n的取值不同,完成擺放時(shí)所使用正方形紙片的張數(shù)也不同,請(qǐng)?zhí)顚懴卤恚?table class="edittable">紙片的邊長(zhǎng)n23456使用的紙片張數(shù)(2)設(shè)正方形ABCD被紙片蓋住的面積(重合部分只計(jì)一次)為S1,未被蓋住的面積為S2
①當(dāng)n=2時(shí),求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,請(qǐng)求出這樣的n值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案