【題目】下列命題中,屬于真命題的是(

A.對(duì)角線互相垂直的四邊形是平行四邊形B.對(duì)角線互相垂直平行的四邊形是菱形

C.對(duì)角線互相垂直且相等的四邊形是矩形D.對(duì)角線互相平分且相等的四邊形是正方形

【答案】B

【解析】

直接利用平行四邊形、矩形、菱形、正方形的判定方法分別判斷得出答案.

解:A、對(duì)角線互相垂直的四邊形是平行四邊形,錯(cuò)誤,不合題意

B、對(duì)角線互相垂直的平行四邊形是菱形,正確,是真命題;

C、對(duì)角線互相平分且相等的四邊形是矩形,本選項(xiàng)錯(cuò)誤,不合題意;

D、對(duì)角線互相平分且相等的四邊形應(yīng)是矩形,本選項(xiàng)錯(cuò)誤,不合題意;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年共有6萬(wàn)名考生參加中考,為了了解這6萬(wàn)名考生的數(shù)學(xué)成績(jī),從中抽取了1000名考生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,以下說(shuō)法:

這種調(diào)查采用了抽樣調(diào)查的方式;②6萬(wàn)名考生是總體;

③1000名考生的數(shù)學(xué)成績(jī)是總體的一個(gè)樣本;樣本容量是1000名.

其中正確的有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知地球距離月球表面約為383900千米,將383900千米用科學(xué)記數(shù)法表示為(保留到千位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣x和反比例函數(shù) (k>0),點(diǎn)A(m,n)(m>0)在反比例函數(shù) 上.

(1)當(dāng)m=n=2時(shí),
①直接寫出k的值;
②將直線y=﹣x作怎樣的平移能使平移后的直線與反比例函數(shù) 只有一個(gè)交點(diǎn).
(2)將直線y=﹣x繞著原點(diǎn)O旋轉(zhuǎn),設(shè)旋轉(zhuǎn)后的直線與反比例函數(shù) 交于點(diǎn)B(a,b)(a>0,b>0)和點(diǎn)C.設(shè)直線AB,AC分別與x軸交于D,E兩點(diǎn),試問(wèn): 的值存在怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備與汽車租憑公司簽訂租車合同,以每月用車路程x km計(jì)算,甲汽車租憑公司每月收取的租賃費(fèi)為y1元,乙汽車租憑公司每月收取的租賃費(fèi)為y2元,若y1、y2與x之間的函數(shù)關(guān)系如圖所示(其中x=0對(duì)應(yīng)的函數(shù)值為月固定租賃費(fèi)),則下列判斷錯(cuò)誤的是(

A.當(dāng)月用車路程為2000km時(shí),兩家汽車租賃公司租賃費(fèi)用相同
B.當(dāng)月用車路程為2300km時(shí),租賃乙汽車租賃公司車比較合算
C.除去月固定租賃費(fèi),甲租賃公司每公里收取的費(fèi)用比乙公司多
D.甲租賃公司每月的固定租賃費(fèi)高于乙租賃公司

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果向東運(yùn)動(dòng)8m記作+8m,那么向西運(yùn)動(dòng)5m應(yīng)記作 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)PAB上,點(diǎn)QDC的延長(zhǎng)線上,連接DP,QP,且∠APD=∠QPD,PQBC于點(diǎn)G.

(1)求證:DQPQ

(2)求AP·DQ的最大值;

(3)若PAB的中點(diǎn),求PG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,若∠A=95°,∠B=40°,則∠C的度數(shù)為(
A.35°
B.40°
C.45°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案