如果一個點能與另外兩個點能構成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點.
(1)如圖1,矩形ABCD中,AB=2,BC=1,請在邊CD上作出A,B兩點的勾股點(點C和點D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2)矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A,B兩點的勾股點的個數(shù);
(3)如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點P作直線l平行于BC,點H為M,N兩點的勾股點,且點H在直線l上.求PH的長.

【答案】分析:(1)以線段AB為直徑的圓與線段CD的交點,或線段CD的中點;
(2)利用(1)中圖形得出C,D,E,F(xiàn)即可得出答案;
(3)求出MN的長度,根據(jù)勾股數(shù)的特點得出符合要求的點.
解答:解:(1)尺規(guī)作圖正確(以線段AB為直徑的圓與線段CD的交點,或線段CD的中點)

(2))∵矩形ABCD中,AB=3,BC=1時,
∴以線段AB為直徑的圓與線段CD的交點有兩個,加上C、D兩點,總共四個點4個;

(3)如圖,∵矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.
過點P作直線l平行于BC,點H為M,N兩點的勾股點,且點H在直線l上,
∴ME=4,NE=3,
∴MN=5,
PM=4,PH=2時,HM=2構成勾股數(shù),
同理可得:
PH″=或PH=2或PH′=3.
點評:此題主要考查了勾股定理的應用以及矩形的性質和作圖與應用作圖等知識,熟練地應用勾股定理找出勾股點是此題的難點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如果一個點能與另外兩個點能構成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點.
(1)如圖1,矩形ABCD中,AB=2,BC=1,請在邊CD上作出A,B兩點的勾股點(點C和點D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
精英家教網(wǎng)精英家教網(wǎng)
(2)矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A,B兩點的勾股點的個數(shù);
(3)如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點P作直線l平行于BC,點H為M,N兩點的勾股點,且點H在直線l上.求PH的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鎮(zhèn)江二模)如果一個點能與另外兩個點構成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點.
(1)如圖1,矩形ABCD中,AB=3,BC=1,請在邊AB上作出C,D兩點的所有勾股點(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(2)如圖2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.動點P從D點出發(fā)沿著DC方向以1cm/s的速度向右移動,過點P的直線l平行于BC,當點P運動到點M時停止運動.設運動時間為t(s),點H為M,N兩點的勾股點,且點H在直線l上.
①當t=4、t=5時,直接寫出點H的個數(shù).
②探究滿足條件的點H的個數(shù)(直接寫出點H的個數(shù)及相應t的取值范圍,不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•崇安區(qū)一模)如果一個點能與另外兩個點能構成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點.

(1)如圖1,矩形ABCD中,AB=2,BC=1,請在邊CD上作出A,B兩點的勾股點(點C和點D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(2)矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A,B兩點的勾股點的個數(shù).
(3)如圖2,矩形ABCD中,AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.動點P從D點出發(fā)沿著DC方向以1 cm/s的速度向右移動,過點P的直線l平行于BC,當點P運動到點M時停止運動.設運動時間為t(s),點H為M,N兩點的勾股點,且點H在直線l上.
①當t=4時,求PH的長.
②探究滿足條件的點H的個數(shù)(直接寫出點H的個數(shù)及相應t的取值范圍,不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個點能與另外兩個點能構成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A、B兩點可構成直角三角形ABC,則稱點C為A、B兩點的勾股點.同樣,點D也是A、B兩點的勾股點.

(1)在矩形ABCD中,AB=12,BC=6,邊CD上A,B兩點的勾股點的個數(shù)為
3
3
個;
(2)如圖1,矩形ABCD中,AB=12,BC=6,DP=4,DM=8,AN=5.過點P作直線l平行于BC,點H為M、N兩點的勾股點,且點H在直線l上,求PH的長;
(3)如圖2,矩形ABCD中,AB=12,BC=6,將紙片折疊,折痕分別與CD、AB交于點F、G,若A、E兩點的勾股點為BC邊的中點M,求折痕FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個點能與另外兩個點能構成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點.

1.如圖1,矩形ABCD中,AB=2,BC=1,請在邊CD上作出A,B兩點的勾股點(點C和點D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

2.矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A, B兩點的勾股點的個數(shù);

3.如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點P作直線l平行于BC,點H為M,N兩點的勾股點,且點H在直線l上.求PH的長

 

查看答案和解析>>

同步練習冊答案