【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度/℃

……

-4

-2

0

2

4

4.5

……

植物每天高度增長量/mm

……

41

49

49

41

25

19.75

……

這些數(shù)據(jù)說明:植物每天高度增長量關(guān)于溫度的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

(1)你認(rèn)為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;

(2)溫度為多少時,這種植物每天高度增長量最大?

(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

【答案】(1;(2)-1℃;(3

【解析】試題分析:(1)根據(jù)表中數(shù)據(jù)可知應(yīng)選擇二次函數(shù),再根據(jù)待定系數(shù)法求解即可;

2)先把(1)中求得的函數(shù)關(guān)系式化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)求解即可;

3)根據(jù)實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm”可得植物每天高度增長量超過25mm”,再根據(jù)表中數(shù)據(jù)的特征即可作出判斷.

1)選擇二次函數(shù),設(shè)

,解得

關(guān)于的函數(shù)關(guān)系式是

不選另外兩個函數(shù)的理由:注意到點(049)不可能在任何反比例函數(shù)圖象上,所以不是的反比例函數(shù);點(-4,41),(-2,49),(2,41)不在同一直線上,所以不是的一次函數(shù);

2)由(1),得,

,

當(dāng)時,有最大值為50

即當(dāng)溫度為-1℃時,這種植物每天高度增長量最大.

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,E為CD上一動點,AE交BD于F,過F作FH⊥AE于H,過H作GH⊥BD于G,下列有四個結(jié)論:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周長為定值,其中正確的結(jié)論有( 。
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2+y2+2x-6y+10=0,則x-y=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年參加我市初中畢業(yè)生學(xué)業(yè)考試的總?cè)藬?shù)約為56000人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為(
A.5.6×103
B.5.6×104
C.5.6×105
D.0.56×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像交軸于,交軸于點,連接直線.

(1)求二次函數(shù)的解析式;

(2)點在二次函數(shù)的圖像上,圓與直線相切,切點為.

①若軸的左側(cè),且△∽△,求點的坐標(biāo);

②若圓的半徑為4,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結(jié)EF、EO,若DE=DPA=45°

1)求⊙O的半徑;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于X的一元二次方程為: 。

(1)當(dāng)方程有兩實數(shù)根時,求的取值范圍;

(2)任取一個值,求出方程的兩個不相等實數(shù)根。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)為( 。
①在同一平面內(nèi)不相交的兩條直線叫做平行線;②平面內(nèi)經(jīng)過一點有且只有一條直線與已知直線垂直;③經(jīng)過一點有且只有一條直線與已知直線平行;
④平行同一直線的兩直線平行.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視塔AB和樓CD的水平距離為100 m,從樓頂C處及樓底D處測得塔頂A的仰角分別為45°和60°,試求樓高和電視塔高(精確到0.1 m).(

查看答案和解析>>

同步練習(xí)冊答案