如圖已知∠C=∠A,∠B=∠E,點(diǎn)D為CA的中點(diǎn),求證:CB=AE.
請(qǐng)說(shuō)明理由.

證明:∵點(diǎn)D為CA的中點(diǎn),
∴CD=AD.
在與△BDC與△EDA中,
△BDC≌△EDA(AAS).
∴CB=AE.
分析:根據(jù)中點(diǎn)的意義得出CD=AD,利用SAS判定△BDC≌△EDA,從而得出CB=AE.
點(diǎn)評(píng):本題考查三角形全等的判定和性質(zhì),判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖已知D是△ABC的邊BC的中點(diǎn),過(guò)D作兩條互相垂直的射線,分別交AB于E,交AC于F,求證:BE+CF>EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖已知電阻R1,R2并聯(lián)在電路中,且R1+R2=10Ω,請(qǐng)用所學(xué)過(guò)的數(shù)學(xué)知識(shí)討論一下R1,R2分別為多少時(shí),該電路的總電阻最大,最大電阻是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖已知OB是半徑,弦EF垂直O(jiān)B于H,點(diǎn)A是HF上的一點(diǎn),BA和⊙O相交于另一點(diǎn)C,過(guò)點(diǎn)C的切線和EF的延長(zhǎng)線交于點(diǎn)D:
(1)求證:DA=DC;  
(2)當(dāng)DF:EF=1:8,DF=
2
時(shí),求AB•AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖已知∠ACB=90°,CD⊥AB于D,則圖中表示點(diǎn)到直線的距離的線段的條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖已知AB∥EF,∠BED=∠B+∠D,求證:AB∥CD
證明:因?yàn)?nbsp; AB∥EF,
已知
已知

所以∠B=∠1.
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等

因?yàn)椤螧ED=∠B+∠D,(   已知   )
所以∠BED=∠1+∠2,
等量代換
等量代換

所以∠2=∠D,
等量代換
等量代換

所以  EF∥CD.
內(nèi)錯(cuò)角相等,兩直線平行
內(nèi)錯(cuò)角相等,兩直線平行

又    AB∥EF,
已知
已知

所以  AB∥CD.
平行公理
平行公理

查看答案和解析>>

同步練習(xí)冊(cè)答案