如圖,在正方形ABCD中,E,F(xiàn)分別是BC、CD邊上的點(diǎn),滿(mǎn)足EF=BE+DF,則tan∠EAF=______.
如圖,把△ADF繞A順時(shí)針旋轉(zhuǎn)90°到△ABG的位置,
∴AG=AF,∠DAF=∠GAB,GB=DF,
而EF=BE+DF,
∴GE=EF,
在△AEG和△AEF中,
AE=AE
AG=AF
EG=EF
,
∴△AEG≌△AEF(SSS),
∴∠GAE=∠EAF,
而∠GAB+∠BAE+∠EAF=90°,
∴∠EAF=∠GAE=45°,
∴tan∠EAF=1.
故答案為:1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P為第一象限內(nèi)一點(diǎn),OP與x軸正半軸的夾角為a,且tana=
3
4
,OP=5,則點(diǎn)P的坐標(biāo)為_(kāi)_____;若將OP繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°角到OQ位置,則點(diǎn)Q的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△ABC中,∠ACB=135°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AED,連接CD,CE.
(1)求證:△ACD為等腰直角三角形;
(2)若BC=1,AC=2,求四邊形ACED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

高速公路的隧道和橋梁最多.如圖是一個(gè)隧道的橫截面,若它的形狀是以O(shè)為圓心的圓的一部分,路面AB=10米,凈高CD=7米,則此圓的半徑OA=( 。
A.5B.7C.
37
5
D.
37
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在⊙O中,AB和CD是兩條平行弦,AB、CD所對(duì)的圓心角分別為120°和60°,圓O的半徑為6cm,則AB、CD之間的距離是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若AB是⊙O的直徑,弦CD⊥AB于E,AE=16,BE=4,則CD=______,AC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△ABO的三個(gè)頂點(diǎn)A,B,O都在格點(diǎn)上.
(1)畫(huà)出△ABO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的三角形△A′B′O;
(2)根據(jù)所畫(huà)的圖找出A′點(diǎn)和B′點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在圖中利用網(wǎng)格線,分別作出△ABC關(guān)于直線l的軸對(duì)稱(chēng)圖形和關(guān)于點(diǎn)O的中心對(duì)稱(chēng)圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一個(gè)3m×4m的矩形地塊上,欲開(kāi)辟出一部分作花壇,要使花壇的面積為矩形面積的一半,且使整個(gè)圖案繞它的中心旋轉(zhuǎn)180°后能與自身重合,請(qǐng)給出你的設(shè)計(jì)方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案