【題目】如圖,在△ABC中AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求
(1)∠BAE的度數(shù).
(2)∠DAE的度數(shù).
(3)探究:有的同學(xué)認為無論∠B、∠C的度數(shù)是多少,都有∠DAE=(∠B-∠C)成立,你同意嗎?并說出成立或不成立的理由.
【答案】(1)40°;(2)20°;(3)成立,理由見解析.
【解析】
(1)先根據(jù)三角形內(nèi)角和定理求出∠BAC,再根據(jù)角平分線求出即可;(2)根據(jù)AD⊥BC和三角形內(nèi)角和定理求出∠BAD,再根據(jù)(1)中∠BAE的度數(shù),求出即可;(3)先根據(jù)三角形內(nèi)角和定理及角平分線用∠B、∠C表示出∠BAE,再根據(jù)垂直,用∠B表示出∠BAD,化簡即可.
(1)∵在△ABC中,∠B=70°,∠C=30°,
∴∠BAC=180°-70°-30°=80°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=×80°=40°;
(2)∵AD⊥BC,∠B=70°,
∴∠BAD=90°-∠B=90°-70°=20°,
∴∠DAE=∠BAE-∠BAD=40°-20°=20°;
(3)成立,理由如下:
∵AE平分∠BAC,
∴∠BAE=(180°-∠B-∠C),
∵AD⊥BC,
∴∠BAD=90°-∠B,
∴∠DAE=∠BAE-∠BAD=(180°-∠B-∠C)-(90°-∠B)=(∠B-∠C),
則成立.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人.行駛路程記錄如下(規(guī)定向南為正,向北為負,單位:):
第1批 | 第2批 | 第3批 | 第4批 | 第5批 |
5 | 2 | -4 | -3 | 10 |
(1)接送完第5批客人后,該駕駛員在公司 邊(填南或北),距離公司 千米.
(2)若該出租車每千米耗油0.2升,那么在這過程中共耗油 升.
(3)若該出租車的計價標(biāo)準(zhǔn)為:行駛路程不超過3收費10元,超過3的部分按每千米1.8元收費,在這過程中該駕駛員共收到車費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面有4張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長都是1,請在方格紙中分別畫出符合要求的圖形,所畫圖形各頂點必須與方格紙中小正方形的頂點重合,具體要求如下:
(1)畫一個直角邊長為4,面積為6的直角三角形.
(2)畫一個底邊長為4,面積為8的等腰三角形.
(3)畫一個面積為5的等腰直角三角形.
(4)畫一個邊長為2,面積為6的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,頂點A、C分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形OABC的兩邊AB、BC分別交于點M、N,ND⊥x軸,垂足為D,連接OM、ON、MN,則下列選項中的結(jié)論錯誤的是( )
A. △ONC≌△OAM
B. 四邊形DAMN與△OMN面積相等
C. ON=MN
D. 若∠MON=45°,MN=2,則點C的坐標(biāo)為(0,+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段AB上一點,在△ACM,△CBN中,AC=CM,BC=CN,∠ACM=∠BCN=60°,連接AN交CM于點E,連接BM交CN于點F.
求證:(1)AN=BM.(2)△CEF是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東東玩具商店用500元購進一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.
(1)求第一批悠悠球每套的進價是多少元;
(2)如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=,點D是邊BC上一點,點H是線段AD上一點,連接BH、CH.當(dāng)∠BHD=60°,∠AHC=90°時,DH=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y (℃)與時間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.
請根據(jù)圖中信息解答下列問題:
(1)求這天的溫度y與時間x(0≤x≤24)的函數(shù)關(guān)系式;
(2)求恒溫系統(tǒng)設(shè)定的恒定溫度;
(3)若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時,才能使蔬菜避免受到傷害?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學(xué)生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com