【題目】已知,∠A與∠B的兩邊分別平行,∠A比∠B的一半大30°,求∠A、∠B的度數(shù).
【答案】∠B=∠A=60°或∠A=80°∠B=100°.
【解析】
設(shè)∠B=x°,則∠A=(x+30)°,再分∠A=∠B與∠A+∠B=180°兩種情況進(jìn)行討論即可.
解:設(shè)∠B=x°,∠A=(x+30)°.
有兩種情況:
(1)當(dāng)∠B=∠A,
∵∠B=x°,∠A=(x+30)°.
∴x°=(x+30)°
∴∠B=∠A=60°;
(2)當(dāng)∠A+∠B=180°時,
∵∠B=x°,∠A=(x+30)°,
∴x°+(x+30)°=180°,
解得x=100,
∴∠A=×100+30=80,
∴∠A=80°∠B=100°.
綜上所述,∠B=∠A=60°或∠A=80°、∠B=100°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個長方體的三視圖(單位:cm),根據(jù)圖中數(shù)據(jù)計算這個長方體的體積是_______cm3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD
所以∠2= ( )
又因為∠1=∠2
所以∠1=∠3( )
所以AB∥ ( )
所以∠BAC+ =180°( )
因為∠BAC=70°
所以∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.
(1)求購買一個籃球、一個足球各需多少元?
(2)若體育老師帶了6000元去購買這種籃球與足球共80個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按,,,四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:級:8分—10分,級:7分—7.9分,級:6分—6.9分,級:1分—5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,對應(yīng)的扇形的圓心角是_______度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在_______等級;
(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達(dá)到級的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù)且)的圖象交于,兩點,與軸交于點.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點在軸上,且,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名戰(zhàn)士在相同條件下各射靶10次,每次命中的環(huán)數(shù)分別是:
甲:8,6,7,8,6,5,9,10,4,7;
乙:6,7,7,6,7,8,7,9,8,5.(單位:環(huán))
(1)分別計算以上兩組數(shù)據(jù)的平均數(shù);
(2)分別求兩組數(shù)據(jù)的方差;
(3)根據(jù)計算結(jié)果,估計兩名戰(zhàn)士的射擊水平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com