【題目】春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項(xiàng)工作,為此,某校對學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時(shí)間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個(gè)一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個(gè)選項(xiàng)中錯(cuò)誤的是( )
A. 經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到
B. 室內(nèi)空氣中的含藥量不低于的持續(xù)時(shí)間達(dá)到了
C. 當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時(shí)間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效
D. 當(dāng)室內(nèi)空氣中的含藥量低于時(shí),對人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=AN,BC=BM,則∠MCN=( )
A. 30°B. 45°C. 60°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC 的頂點(diǎn) A (-2,0),點(diǎn) B,C分別在x軸和y軸的正半軸上,∠ACB=90°,∠BAC=60°
(1)求點(diǎn) B 的坐標(biāo);
(2)點(diǎn) P 為 AC延長線上一點(diǎn),過 P 作PQ∥x軸交 BC 的延長線于點(diǎn) Q ,若點(diǎn) P 的橫坐標(biāo)為t,線段PQ的長為d,請用含t的式子表示d;
(3) 在(2)的條件下,當(dāng)PA=d時(shí),E是線段CQ上一點(diǎn),連接OE,BP,若OE=BP,求∠APB-∠OEB的度數(shù)..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩條直線DM∥CN,線段AB的兩個(gè)端點(diǎn)A、B分別在直線OM、CN上,∠C=∠BAD,點(diǎn)E在線段BC上,且DB平分∠ADE.
(1)求證:AB∥CD;
(2)若沿著NC方向平移線段AB,那么∠CBD與∠CED度數(shù)之間的關(guān)系是否隨著AB位置的變化而變化?若變化,請找出變化規(guī)律;若不變化,請確定它們之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,是上的一點(diǎn),連接,過點(diǎn)作,垂足為點(diǎn),延長交于點(diǎn),連接.
(1)求證:.
(2)若正方形邊長是5,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我市農(nóng)產(chǎn)品整體品牌形象“聊·勝一籌!”的推出,現(xiàn)代農(nóng)業(yè)得到了更快發(fā)展.某農(nóng)場為擴(kuò)大生產(chǎn)建設(shè)了一批新型鋼管裝配式大棚,如圖1.線段,分別表示大棚的墻高和跨度,表示保溫板的長.已知墻高為2米,墻面與保溫板所成的角,在點(diǎn)處測得點(diǎn)、點(diǎn)的仰角分別為,,如圖2.求保溫板的長是多少米?(精確到0.1米)
(參考數(shù)據(jù):,,,,,,.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)如圖1,若BC=3,AB=5,則ctanB= ;
(2)ctan60°= ;
(3)如圖2,已知:△ABC中,∠B是銳角,ctan C=2,AB=10,BC=20,試求∠B的余弦cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點(diǎn)O.E,F(xiàn)是AC上的兩點(diǎn),并且AE=CF,連接DE,BF.
(1)求證:△DOE≌△BOF;
(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com