【題目】如圖,ABO的直徑,點C是圓周上一點,連接AC、BC,以點C為端點作射線CD、CP分別交線段AB所在直線于點D、P,使∠1=∠2=∠A

1)求證:直線PCO的切線;

2)若CD4BD2,求線段BP的長.

【答案】(1)詳見解析;(2)

【解析】

1)連接OC,由AB是⊙O的直徑證得∠ACO+BCO90°,由OA=OC證得∠2=∠A=ACO,由此得到∠PCO90°,即證得直線PC是⊙O的切線;

2)利用∠1=∠A證得∠CDB90°,得到CD2ADBD,求出AD,由此求得AB=10OB=5;在由∠OCP90°推出OC2ODOP,求出OP,由此求得線段BP的長.

1)連接OC,

AB⊙O的直徑,

∴∠ACB90°,

∴∠ACO+BCO90°,

OAOC

∴∠A=∠ACO,

∵∠A=∠1=∠2

∴∠2=∠ACO,

∴∠2+BCO90°,

∴∠PCO90°,

OCPC

∴直線PCO的切線;

2)∵∠ACB90°,

∴∠A+ABC90°

∴∠1=∠A,

∴∠1+ABC90°,

∴∠CDB90°,

CD2ADBD,

CD4BD2,

AD8,

AB10

OCOB5,

∵∠OCP90°,CDOP

OC2ODOP,

52=(52)×OP

OP,

PBOPOB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題提出)

1)如圖①,在等腰中,斜邊,點上一點,連接,則的最小值為    

(問題探究)

2)如圖2,在中,,點上一點,且,點是邊上一動點,連接,將沿翻折得到,點與點對應(yīng),連接,求的最小值.

(問題解決)

3)如圖③,四邊形是規(guī)劃中的休閑廣場示意圖,其中,,,點上一點,.現(xiàn)計劃在四邊形內(nèi)選取一點,把建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進(jìn)入商業(yè)區(qū),需修建小路、,從實用和美觀的角度,要求滿足,且景觀綠化區(qū)面積足夠大,即區(qū)域面積盡可能。畡t在四邊形內(nèi)是否存在這樣的點?若存在,請求出面積的最小值;若不存在,請說明理由.

        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,,點和點上關(guān)于直線對稱的兩個點,連接、,且,直線和直線相交于點,過點作直線與線段的延長線相交于點,與直線相交于點,且

1)求證:直線的切線;

2)若點為線段上一點,連接,滿足,

①求證:;

②求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線ABykx1分別交x軸、y軸于點AB,直線CDyx+2分別交x軸、y軸于點D、C,且直線AB、CD交于點E,E的橫坐標(biāo)為﹣6

(1)如圖①,求直線AB的解析式;

(2)如圖②,點P為直線BA第一象限上一點,過Py軸的平行線交直線CDG,交x軸于F,在線段PG取點N,在線段AF上取點Q,使GNQF,在DG上取點M,連接MN、QN,若∠GMN=∠QNF,求的值;

(3)(2)的條件下,點E關(guān)于x軸對稱點為T,連接MP、TQ,若MPTQ,且GNNP43,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y1=﹣x+2和拋物線相交于點A,B

(1)當(dāng)k時,求兩函數(shù)圖象的交點坐標(biāo);

(2)二次函數(shù)y2的頂點為P,PAPB與直線y1=﹣x+2垂直時,求k的值.

(3)當(dāng)﹣4x2時,y1y2,試直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖,,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學(xué)生人數(shù)為   ,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB是⊙O的直徑,C點在⊙O上,FAC的中點,OF的延長線交⊙O于點D,點EAB的延長線上,∠A=∠BCE

1)求證:CE是⊙O的切線;

2)若BCBE,判定四邊形OBCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線過點,與軸交于點.軸下方的拋物線上一動點(包含點,).作直線,若過點軸的垂線,交直線于點

1)求拋物線的解析式;

2)在點運動的過程中,請求出面積的最大值及此時點的坐標(biāo);

3)在點運動的過程中,是否存在點,使是等腰三角形.若存在,請直接寫出點的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AMBN,CBN上一點, BD平分∠ABN且過AC的中點O,交AM于點D,DEBD,交BN于點E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案