如圖,已知直線PA是一次函數(shù)y=x+n(n>0)的圖象,直線PB是一次函數(shù)y=-2x+m(m>n)的圖象.
(1)用m,n表示A、B、P點的坐標;
(2)若點Q是PA與y軸的交點,且P點坐標為(
1
3
,
4
3
),試求四邊形PQOB的面積.
分析:(1)直線PA的解析式令y=0求解即可得到點A的坐標,直線PB的解析式令y=0求解即可得到點B的坐標,聯(lián)立兩直線解析式求解即可得到點P的坐標;
(2)根據(jù)點P的坐標求出點A、B的坐標,再求出點Q的坐標,然后根據(jù)S四邊形PQOB=S△PAB-S△AOQ列式計算即可得解.
解答:解:(1)令y=0,則x+n=0,
解得x=-n,
所以,點A(-n,0),
令y=0,則-2x+m=0,
解得x=
m
2
,
所以,點B(
m
2
,0),
聯(lián)立
y=x+n
y=-2x+m
,
解得
x=
m-n
3
y=
m+2n
3
,
所以,點P(
m-n
3
m+2n
3
);

(2)∵P點坐標為(
1
3
,
4
3
),
m-n
3
=
1
3
m+2n
3
=
4
3
,
解得
m=2
n=1

直線PA的解析式令x=0,則y=n=1,
S四邊形PQOB=S△PAB-S△AOQ,
=
1
2
×(2+1)×
4
3
-
1
2
×1×1,
=
3
2
點評:本題考查了兩直線相交的問題,主要利用了直線與坐標軸的交點坐標的求法,兩直線交點的求法,(2)觀察出四邊形的面積等于兩個三角形的面積的差是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖象,直線PB是一次函數(shù)y=-2x+m(精英家教網(wǎng)m>n)的圖象.
(1)用m,n表示A、B、P點的坐標;
(2)若點Q是PA與y軸的交點,且四邊形PQOB的面積是
56
,AB=2,試求出點P的坐標,并求出直線PA與PB的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:期末題 題型:解答題

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖像,直線PB是一次函數(shù)y=-2x+m(m>n)的圖像。
(1)用m,n表示A、B 、P點的坐標;
(2)若點Q是PA與y軸的交點,且四邊形PQOB的面積是,AB=2,試求出點P的坐標,并求出直線PA與PB的表達式。

查看答案和解析>>

科目:初中數(shù)學 來源:期末題 題型:解答題

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖象,直線PB是一次函數(shù)y=﹣2x+m(m>n)的圖象.
(1)用m,n表示A、B、P點的坐標;
(2)若點Q是PA與y軸的交點,且四邊形PQOB的面積是,AB=2,試求出點P的坐標,并求出直線PA與PB的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年1月中考數(shù)學模擬試卷(11)(解析版) 題型:解答題

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖象,直線PB是一次函數(shù)y=-2x+m(m>n)的圖象.
(1)用m,n表示A、B、P點的坐標;
(2)若點Q是PA與y軸的交點,且四邊形PQOB的面積是,AB=2,試求出點P的坐標,并求出直線PA與PB的表達式.

查看答案和解析>>

同步練習冊答案