如圖,已知E的平分線上一點(diǎn),,垂足分別為C、D,求證:

(1)

(2)OC=OD;

(3)OECD的垂直平分線。

 

答案:
解析:

證明:(1)∵OE平分(已知),∴ED=EC(角平分線上的點(diǎn)到角兩邊的距離相等)。∴(等邊對(duì)等角)。(2) ∵(已知),∴(垂直定義)。又∵(已證),∴(等式性質(zhì))。則OC=OD(等角對(duì)等邊)。(3)∵OD=OC(已證),OE平分(已知),∴OE垂直平分線段CD,即OECD的垂直平分線(等腰三角形“三線合一”的性質(zhì))。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知AB⊙O是的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
求證:CD是⊙O的切線.



查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知,的平分線,求的度數(shù)。(10分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶市重慶一中九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知:△ABC為邊長(zhǎng)是的等邊三角形,四邊形DEFG為邊長(zhǎng)是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿EF方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動(dòng),設(shè)△ABC的運(yùn)動(dòng)時(shí)間為t秒().

【小題1】在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式;
【小題2】如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作的角平分線EM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請(qǐng)求出線段EH的長(zhǎng)度;若不存在,請(qǐng)說明理由.
【小題3】如圖3,若四邊形DEFG為邊長(zhǎng)為的正方形,△ABC的移動(dòng)速度為每秒個(gè)單位長(zhǎng)度,其余條件保持不變.△ABC開始移動(dòng)的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒個(gè)單位長(zhǎng)度開始移動(dòng),△ABC停止運(yùn)動(dòng)時(shí),Q點(diǎn)也停止運(yùn)動(dòng).設(shè)在運(yùn)動(dòng)過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014屆浙江建德八年級(jí)5月單元檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知A,B兩點(diǎn)是直線AB與軸的正半軸,軸的正半軸的交點(diǎn),且OA,OB的長(zhǎng)分別是的兩個(gè)根(OA>OB),射線BC平分∠ABO交軸于C點(diǎn),若有一動(dòng)點(diǎn)P以每秒1個(gè)單位的速度從B點(diǎn)開始沿射線BC移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)設(shè)△APB和△OPB的面積分別為S1,S2,求S1∶S2

(2)求直線BC的解析式;

(3)在點(diǎn)P的運(yùn)動(dòng)過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時(shí)間t的值,若不可能,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案