【題目】已知在平面直角坐標(biāo)系中,一次函數(shù)y= x+3的圖像與y軸交于點(diǎn)A,點(diǎn)M在正比例函數(shù)y= x的圖像x>0的那部分上,且MO=MA(O為坐標(biāo)原點(diǎn)).
(1)求線段AM的長(zhǎng);
(2)若反比例函數(shù)y= 的圖像經(jīng)過點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)M′,求反比例函數(shù)解析式,并直接寫出當(dāng)x>0時(shí), x+3與 的大小關(guān)系.

【答案】
(1)解:令x=0代入y= x+3中,

∴y=3,

∴A(0,3)

設(shè)M(m, m),其中m>0,

∴由勾股定理可知:MO2=m2+ m2= m2,

MA2=m2+( m﹣3)2,

∵M(jìn)A=MO,

m2=m2+( m﹣3)2,

∴m=1,

∴M(1, ),

由勾股定理可知:AM= =


(2)解:由題意可知:M′(﹣1,

將M′(﹣1, )代入y=

∴k=﹣

∴聯(lián)立

解得:x=﹣2

當(dāng)x>0時(shí), x+3>﹣


【解析】(1)求出點(diǎn)A為(0,3),設(shè)M的坐標(biāo)為(m, m),根據(jù)勾股定理求出MA2與MO2 , 列出方程求出m的值即可.(2)求出M′的坐標(biāo),求出反比例函數(shù)的解析式,然后求出兩圖像的交點(diǎn)坐標(biāo)后即可判斷 x+3與 的大小關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為弧AN的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2.

(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;

(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為秒,在運(yùn)動(dòng)過程中,當(dāng)為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為6?

(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻使得?若存在,請(qǐng)求出此時(shí)點(diǎn)表示的數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市從今年1月1日起調(diào)整居民用水價(jià)格,每噸水費(fèi)上漲三分之一,小麗家去年12月的水費(fèi)是15元,今年2月的水費(fèi)是30元.已知今年2月的用水量比去年12月的用水量多5噸,求該市今年居民用水的價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①點(diǎn)(-ab,c)在第四象限;②a+b+c<0;>1;2a+b>0.其中正確的是_______(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面選項(xiàng)中符合代數(shù)式書寫要求的是 ( )

A. y2 B. ay·3 C. D. a×b+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解第一屆現(xiàn)代奧運(yùn)會(huì)于1896年在希臘雅典舉行,此后每4年舉行一次,奧運(yùn)會(huì)如因故不能舉行,屆數(shù)照算.則奧運(yùn)會(huì)的年份可排成如下一列數(shù):

1896,1900,1904,1908,…

觀察上面一列數(shù),我們發(fā)現(xiàn)這一列數(shù)從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都等于同一個(gè)常數(shù)4,這一列數(shù)在數(shù)學(xué)上叫做等差數(shù)列,這個(gè)常數(shù)4叫做等差數(shù)列的公差

(1)等差數(shù)列2,5,8,…的第五項(xiàng)多少

(2)若一個(gè)等差數(shù)列的第二項(xiàng)是28,第三項(xiàng)是46,則它的公差為多少,第一項(xiàng)為多少,第五項(xiàng)為多少;

(3)聰明的小雪同學(xué)作了一些思考,如果一列數(shù)a1,a2,a3…是等差數(shù)列,且公差為d,根據(jù)上述規(guī)定,應(yīng)該有:

a 2-a1=d,a3-a2= d,a4-a3= d,…

所以a 2=a1+d,

a3=a2+d=(a1+d)+d=a1+2d,

a4=a3+d=( a1+2d)+d=a1+3d,

則等差數(shù)列的第n項(xiàng)an多少 (用含有a1、nd的代數(shù)式表示);

(4)按照上面的推理,2008年中國(guó)北京奧運(yùn)會(huì)是第幾屆奧運(yùn)會(huì),2050年會(huì)不會(huì)(填“會(huì)”或“不會(huì)”)舉行奧運(yùn)會(huì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高科技創(chuàng)新意識(shí),我市某中學(xué)舉行了“2016年科技節(jié)”活動(dòng),其中科技比賽包括“航模”、“機(jī)器人”、“環(huán)保”“建!彼膫(gè)類別(每個(gè)學(xué)生只能參加一個(gè)類別的比賽),各類別參賽人數(shù)統(tǒng)計(jì)如圖:

請(qǐng)根據(jù)以上信息,解答下列問題:
(1)全體參賽的學(xué)生共有人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)“建!痹谏刃谓y(tǒng)計(jì)圖中的圓心角是°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了準(zhǔn)備“迎新”匯演,七(1)班學(xué)生分成甲乙兩隊(duì)進(jìn)行幾天排練.其中甲隊(duì)隊(duì)長(zhǎng)對(duì)乙隊(duì)隊(duì)長(zhǎng)說:你們調(diào)5人來我們隊(duì),則我們的人數(shù)和你們的人數(shù)相同;乙隊(duì)隊(duì)長(zhǎng)跟甲隊(duì)隊(duì)長(zhǎng)說:你們調(diào)5人來我們隊(duì),則我們的人數(shù)是你們的人數(shù)的3.

(1)請(qǐng)根據(jù)上述兩位隊(duì)長(zhǎng)的交談,求出七(1)班的學(xué)生人數(shù);

(2)為了增強(qiáng)演出的舞臺(tái)效果,全部學(xué)生需要租賃演出服裝,班主任到某服裝租賃店了解到:多于20套、少于50套服裝的,可供選擇的收費(fèi)方式如下:

方式一一套服裝一天收取20元,另收總計(jì)80元的服裝清洗費(fèi)

方式二:在一套服裝一天收取20元的基礎(chǔ)上九折,一套服裝每天收取服裝清洗費(fèi)1元,另收每套服裝磨損費(fèi)5元(不按天計(jì)算);

設(shè)租賃服裝x天(x為整數(shù)),請(qǐng)你幫班主任參謀一下:選擇那種付費(fèi)方式節(jié)省一些,并說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案