解:(1)BD與EF互相平分.理由如下:
∵DE⊥AC,BF⊥AC,
∴∠BFA=∠DEC=90°.
又∵AE=CF,
∴AE+EF=CF+EF,即AF=CE,
在Rt△BFA與Rt△DEC中,
,
∴Rt△BFA≌Rt△DEC(HL),
∴BF=DE,
∵BF∥DE,
∴四邊形BEDF為平行四邊形,
∴BD與EF互相平分;
(2)上述結論還成立.理由如下:
∵DE⊥AC,BF⊥AC,
∴∠BFA=∠DEC=90°.
又∵AE=CF,
∴AE-EF=CF-EF,即AF=CE,
在Rt△BFA與Rt△DEC中,
,
∴Rt△BFA≌Rt△DEC(HL),
∴BF=DE,
∵BF∥DE,
∴四邊形BEDF為平行四邊形,
∴BD與EF互相平分.
分析:(1)連接BE、FD,首先由題意推出AF=CE,∠BFA=∠DEC=90°,則由全等三角形的判定定理HL證得Rt△BFA≌Rt△DEC,便知BF=DE,推出四邊形BEDF為平行四邊形,即可推出BD與EF互相平分;
(2)同(1)的證明過程.
點評:本題考查了全等三角形的判定與性質(zhì).全等三角形的判定是結合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關鍵是選擇恰當?shù)呐卸l件.