(2010•南京)如圖,正方形ABCD的邊長(zhǎng)是2,M是AD的中點(diǎn),點(diǎn)E從點(diǎn)A出發(fā),沿AB運(yùn)動(dòng)到點(diǎn)B停止,連接EM并延長(zhǎng)交射線(xiàn)CD于點(diǎn)F,過(guò)M作EF的垂線(xiàn)交射線(xiàn)BC于點(diǎn)G,連接EG、FG.
(1)設(shè)AE=x時(shí),△EGF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)P是MG的中點(diǎn),請(qǐng)直接寫(xiě)出點(diǎn)P的運(yùn)動(dòng)路線(xiàn)的長(zhǎng).

【答案】分析:(1)①E、A重合時(shí),三角形EFG的底和高都等于正方形的邊長(zhǎng),由此可得到其面積;
②E、A不重合時(shí);易證得△AEM≌△FDM,則EM=FM,由勾股定理易求得EM的長(zhǎng),即可得出EF的長(zhǎng);下面求MG的長(zhǎng),過(guò)M作MN⊥BC于N,則AB=MN=2AM,由于∠AME和∠NMG同為∠EMN的余角,由此可證得△AEM∽△NCM,根據(jù)相似三角形得到的關(guān)于AM、MN、EM、MC的比例關(guān)系式,即可求得MG的表達(dá)式,進(jìn)而可由三角形的面積公式求出y、x的函數(shù)關(guān)系式;
(2)可分別作出E、A重合和E、B重合時(shí)P點(diǎn)的位置(即P為A與E重合時(shí)得到的對(duì)應(yīng)點(diǎn),P′為E與B重合時(shí)的對(duì)應(yīng)點(diǎn)),此時(shí)可發(fā)現(xiàn)PP′正好是△EGG′的中位線(xiàn),則P點(diǎn)運(yùn)動(dòng)的距離為GG′的一半;Rt△BMG′中,MG⊥BG′,易證得∠MBG=∠GMG′,根據(jù)∠MBG的正切值即可得到GG′、GM(即正方形的邊長(zhǎng))的比例關(guān)系,由此得解.
解答:解:(1)當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),x=0,y=×2×2=2
當(dāng)點(diǎn)E與點(diǎn)A不重合時(shí),0<x≤2
在正方形ABCD中,∠A=∠ADC=90°
∴∠MDF=90°,∴∠A=∠MDF
在△AME和△DMF中
,
∴△AME≌△DMF(ASA)
∴ME=MF
在Rt△AME中,AE=x,AM=1,ME=
∴EF=2ME=2
過(guò)M作MN⊥BC,垂足為N(如圖)
則∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM
∴∠AME+∠EMN=90°
∵∠EMG=90°
∴∠GMN+∠EMN=90°
∴∠AME=∠GMN
∴Rt△AME∽R(shí)t△NMG
=,即=
∴MG=2ME=2
∴y=EF×MG=×2×2=2x2+2
∴y=2x2+2,其中0≤x≤2;(6分)

(2)如圖,PP′即為P點(diǎn)運(yùn)動(dòng)的距離;
在Rt△BMG′中,MG⊥BG′;
∴∠MBG=∠G′MG=90°-∠BMG;
∴tan∠MBG==2,
∴tan∠GMG′=tan∠MBG==2;
∴GG′=2MG=4;
△MGG′中,P、P′分別是MG、MG′的中點(diǎn),
∴PP′是△MGG′的中位線(xiàn);
∴PP′=GG′=2;
即:點(diǎn)P運(yùn)動(dòng)路線(xiàn)的長(zhǎng)為2.(8分)
點(diǎn)評(píng):此題考查了正方形的性質(zhì),等腰三角形、相似三角形、全等三角形的判定和性質(zhì)以及二次函數(shù)等知識(shí);綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《投影與視圖》(04)(解析版) 題型:選擇題

(2010•南京)如圖,夜晚,小亮從點(diǎn)A經(jīng)過(guò)路燈C的正下方沿直線(xiàn)走到點(diǎn)B,他的影長(zhǎng)y隨他與點(diǎn)A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2010•南京)如圖,小明欲利用測(cè)角儀測(cè)量樹(shù)的高度.已知他離樹(shù)的水平距離BC為10m,測(cè)角儀的高度CD為1.5m,測(cè)得樹(shù)頂A的仰角為33°.求樹(shù)的高度AB.
(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•南京)如圖,夜晚,小亮從點(diǎn)A經(jīng)過(guò)路燈C的正下方沿直線(xiàn)走到點(diǎn)B,他的影長(zhǎng)y隨他與點(diǎn)A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•南京)如圖,在平面直角坐標(biāo)系中,菱形OABC的頂點(diǎn)C的坐標(biāo)是(3,4),則頂點(diǎn)A、B的坐標(biāo)分別是( )

A.(4,0)(7,4)
B.(4,0)(8,4)
C.(5,0)(7,4)
D.(5,0)(8,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•南京)如圖,下列各數(shù)中,數(shù)軸上點(diǎn)A表示的可能是( )

A.4的算術(shù)平方根
B.4的立方根
C.8的算術(shù)平方根
D.8的立方根

查看答案和解析>>

同步練習(xí)冊(cè)答案