【題目】天門山索道是世界最長的高山客運(yùn)索道,位于張家界天門山景區(qū).在一次檢修維護(hù)中,檢修人員從索道A處開始,沿ABC路線對(duì)索道進(jìn)行檢修維護(hù).如圖:已知米,米,AB與水平線的夾角是BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)

【答案】檢修人員上升的垂直高度943米.

【解析】

如圖,過點(diǎn)B于點(diǎn)H,在中先求出BH的長,繼而求出A1B1的長,一次方程的應(yīng)用等知識(shí),弄清是法運(yùn)算,最后選擇使原式有意義有在中,根據(jù)三角函數(shù)求出B1C的長,即可求得結(jié)論.

如圖,過點(diǎn)B于點(diǎn)H

中,,,

(),

(),

中,,

,

,

檢修人員上升的垂直高度()

答:檢修人員上升的垂直高度943米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),與軸,軸分別交于,兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出,時(shí)的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在以放飛青春夢(mèng)想,展示你我風(fēng)采為主題的校園文化藝術(shù)節(jié)期間,舉辦了.歌唱,.舞蹈,.繪畫,.演講共四個(gè)類別的比賽,要求每位學(xué)生必須參加且僅能參加一個(gè)類別.小紅隨機(jī)調(diào)查了部分學(xué)生的報(bào)名情況,并繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計(jì)圖中部分的圓心角度數(shù)是多少?

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)若全校共有1500名學(xué)生,請(qǐng)估計(jì)該校報(bào)名參加繪畫和演講兩個(gè)類別的比賽的學(xué)生共有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)兩位數(shù)中,個(gè)位數(shù)字比十位數(shù)字大1,則稱這個(gè)兩位數(shù)為“遞增數(shù)”.例如56就是一個(gè)“遞增數(shù)”,現(xiàn)有2,3,45四個(gè)數(shù)字.

1)若先抽出的數(shù)字3作為十位數(shù),再從其余3個(gè)數(shù)字隨機(jī)抽出1個(gè)數(shù)字為個(gè)位數(shù),組成的兩位數(shù)恰為“遞增數(shù)”的概率為________

2)先從四個(gè)數(shù)中隨機(jī)抽出一個(gè)數(shù)作為十位數(shù),再從其余3個(gè)數(shù)字隨機(jī)抽出1個(gè)數(shù)字為個(gè)位數(shù).組成的兩位數(shù)恰為“遞增數(shù)”的概率是多少?請(qǐng)用列表或畫樹狀圖的方法分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,以為弦的相切于點(diǎn)

1)求證:的切線;

2)將以下部分沿直線向上翻折.

①如圖2,若翻折后的弧過中點(diǎn),并交于點(diǎn),請(qǐng)判斷的關(guān)系,并說明理由.

②如圖3,若,且翻折后的弧恰好過點(diǎn),則的半徑為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點(diǎn)),已知EF=CD=8,則O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)P,FCD上一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,NAFDE,連接PN,則以下結(jié)論中:①SABM4SFDM;②PN;③tanEAF;④△PMN∽△DPE.正確的是________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,點(diǎn)邊上一動(dòng)點(diǎn)(與點(diǎn)不重合),連接的兩邊所在射線以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)分別交射線于點(diǎn)

1)依題意補(bǔ)全圖形;

2)若,求的大小(用含的式子表示)

3)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線、為常數(shù))的頂點(diǎn)為,等腰直角三角形的頂點(diǎn)的坐標(biāo)為的坐標(biāo)為,直角頂點(diǎn)在第四象限.

1)如圖,若該拋物線經(jīng)過、兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;

2)平移(1)中的拋物線,使頂點(diǎn)在直線上滑動(dòng),且與交于另一點(diǎn)

①若點(diǎn)在直線下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以、三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo);

②取的中點(diǎn),連接,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案