【題目】如圖,正方形ABCD的邊長為2,點EBC的中點,AEBD交于點P,FCD上一點,連接AF分別交BD,DE于點M,NAFDE,連接PN,則以下結(jié)論中:①SABM4SFDM;②PN;③tanEAF;④△PMN∽△DPE.正確的是________(填序號)

【答案】①②③

【解析】

先證ABM~FDM,利用相似三角形的性質(zhì)即可判斷①;過點PPHAN于點H,根據(jù)平行線分線段成比例定理,求出APAH的長,進(jìn)一步得PH,HN的長,由勾股定理即可求出PN的長,即可判斷②;分別求出EN,AN的長,即可判斷③;證明∠DPNPDE,即可判斷④.

∵正方形ABCD的邊長為2,點EBC的中點,

AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,

AFDE,

∴∠DAF+ADN=ADN+CDE=90°,

∴∠DAF=CDE,

又∵AD=CD,∠ADF=DCE=90°,

ADFDCEASA),

DF=CE=1,

ABDF,

ABM~FDM,

,

SABM4SFDM,故①正確;

AB=CD,BE=CE,∠ABE=C=90°,

ABEDCESAS),

AE=DE=AF=

,

DN=,

EN=DE-DN=-=,AN=

tanEAF=,故③正確;

過點PPHAN于點H,

BEAD,

,

PA=

tanEAF=,

sinEAF=,

PH=PAsinEAF=

PHEN,

,

AH=HN=AN-AH=,

PN=,故②正確;

PNDN,

∴∠DPNPDE,

∴△PMN與△DPE不相似,故④錯誤.

故答案是:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣10),(30

C. 當(dāng)x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弧AE=BD,BEDCDC的延長線于點E.

(1)求證:∠1=BCE;

(2)求證:BE是⊙O的切線;

(3)若EC=1,CD=3,求cosDBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天門山索道是世界最長的高山客運索道,位于張家界天門山景區(qū).在一次檢修維護(hù)中,檢修人員從索道A處開始,沿ABC路線對索道進(jìn)行檢修維護(hù).如圖:已知米,米,AB與水平線的夾角是BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備購進(jìn)兩種商品,種商品毎件的進(jìn)價比種商品每件的進(jìn)價多20元,用3000元購進(jìn)種商品和用1800元購進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.

1種商品每件的進(jìn)價和種商品每件的進(jìn)價各是多少元?

2)商店計劃用不超過1560元的資金購進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進(jìn)貨方案?

3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠)元,種商品售價不變,在(2)條件下,請設(shè)計出銷售這40件商品獲得總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點,直線y軸交于點B,與圖象G交于點C.

1)求m的值.

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點AC之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.

①當(dāng)直線l過點時,直接寫出區(qū)域W內(nèi)的整點個數(shù).

②若區(qū)域W內(nèi)的整點不少于4個,結(jié)合函數(shù)圖象,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過第二象限內(nèi)的點,軸的平行線,與,軸分別交于點,,與雙曲線分別交于點,

下面三個結(jié)論,

①存在無數(shù)個點使

②存在無數(shù)個點使;

③存在無數(shù)個點使

所有正確結(jié)論的序號是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,E是邊的中點,點P在邊上,設(shè),若以點D為圓心,為半徑的與線段只有一個公共點,則所有滿足條件的x的取值范圍是______

查看答案和解析>>

同步練習(xí)冊答案