【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=°時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
圖1 圖2
【答案】(1)證明見解析(2)仍然成立 (3)
【解析】試題分析:(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.
(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.
(3)由(1)(2)可知,∠AMN等于它所在的正多邊形的一個內(nèi)角即等于時,結(jié)論AM=MN仍然成立.
(1)證明:在邊AB上截取AE=MC,連接ME.
∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,
BE=AB﹣AE=BC﹣MC=BM,
∴∠BEM=45°,∴∠AEM=135°.
∵N是∠DCP的平分線上一點,
∴∠NCP=45°,∴∠MCN=135°.
在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
∴△AEM≌△MCN(ASA),
∴AM=MN.
(2)解:結(jié)論AM=MN還成立
證明:在邊AB上截取AE=MC,連接ME.
在正△ABC中,∠B=∠BCA=60°,AB=BC.
∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,
BE=AB﹣AE=BC﹣MC=BM,
∴∠BEM=60°,∴∠AEM=120°.
∵N是∠ACP的平分線上一點,
∴∠ACN=60°,∴∠MCN=120°.
在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
∴△AEM≌△MCN(ASA),
∴AM=MN.
(3)解:若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,則當(dāng)∠AMN=時,結(jié)論AM=MN仍然成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點D,動點P從點A出發(fā)以每秒1厘米的速度在線段AD上向終點D運(yùn)動.設(shè)動點運(yùn)動時間為t秒.
(1)求AD的長;
(2)當(dāng)△PDC的面積為15平方厘米時,求t的值;
(3)動點M從點C出發(fā)以每秒2厘米的速度在射線CB上運(yùn)動.點M與點P同時出發(fā),且當(dāng)點P運(yùn)動到終點D時,點M也停止運(yùn)動.是否存在t,使得?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 問題與探索
問題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動.如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對角線AC剪開,得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長BC和DC′交于點E,則四邊形ACEC′的形狀是 .
(2)創(chuàng)新小組將圖(1)中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請證明這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市將某品牌的洗滌液按照進(jìn)價提高50%后標(biāo)價,再打八折銷售,仍可獲利30元.則這種商品的進(jìn)價是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓的半徑分別為1和5,圓心距為4,那么兩圓的位置關(guān)系是( )
A.外離
B.外切
C.相交
D.內(nèi)切
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過點A(4,-5),與x軸的負(fù)半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D.
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦ED⊥AB于點F,點C是劣弧AD上的動點(不與點A、D重合),連接BC交ED于點G.過點C作⊙O的切線與ED的延長線交于點P.
(1)求證:PC=PG;
(2)當(dāng)點G是BC的中點時,求證:;
(3)已知⊙O的半徑為5,在滿足(2)的條件時,點O到BC的距離為,求此時△CGP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com