【題目】小明從A地向南偏東m°(0<m<90)的方向行走到B地,然后向左轉(zhuǎn)30°行走到C地,則下面表述中,正確的個(gè)數(shù)是( )
①B可能在C的北偏西m°方向;
②當(dāng)m<60時(shí),B在C的北偏西(m+30)°方向;
③B不可能在C的南偏西m°方向;
④當(dāng)m>60時(shí),B在C的南偏西(150-m)°方向
A. 1B. 2C. 3D. 4
【答案】B
【解析】
分三種情況討論:①當(dāng)0°<m<60°時(shí);②當(dāng)m=60°時(shí);③當(dāng)60°<m<90°時(shí);分別畫出圖形,根據(jù)方位角的知識(shí)即可解決問題.
分三種情況討論:①當(dāng)0°<m<60°時(shí),如圖1.
∵0°<m<60°,∴30°<m+30°<90°,∴∠MCB= (m+30)°,∴B在C的北偏西(m+30)°方向,故②正確;
∵m+30>m,∴B不可能在C的北偏西m°方向;∴①錯(cuò)誤;
②當(dāng)m=60°時(shí),如圖2,m+30°=90°,∴∠MCB= 90°,∴B在C的正西方向;
③當(dāng)60°<m<90°時(shí),如圖3.
∵60°<m<90°,∴90°<m+30°<120°,∴∠BCN= 180°-(m+30°)=(150-m)°,∴B在C的南偏西(150-m)°方向,故④正確.
當(dāng)150-m= m時(shí),解得:m=75°,∴當(dāng)m=75°時(shí),B在C的南偏西m°方向,故③錯(cuò)誤.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長均為1)依次進(jìn)行位似變換、軸對(duì)稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對(duì)稱圖形△A2B2C2;
(3)請(qǐng)寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點(diǎn)P(x,y)為△ABC內(nèi)一點(diǎn),依次經(jīng)過上述三次變換后,點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),AE與BF相交于點(diǎn)G.
(1)如圖1,求證:AE⊥BF;
(2)如圖2,將△BCF沿BF折疊,得到△BPF,延長FP交BA的延長線于點(diǎn)Q,若AB=4,求QF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,有一個(gè)內(nèi)角是直角的三角形.其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊.數(shù)學(xué)家已發(fā)現(xiàn)在一個(gè)直角三角形中,兩條直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學(xué)語言表達(dá)為:.
(1)在圖中,若,,則等于多少;
(2)觀察圖,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個(gè)相同的直角三角形邊、在一條直線上;
(3)如圖③所示,折疊長方形的一邊,使點(diǎn)落在邊的點(diǎn)處,已知,,利用上面的結(jié)論求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,BC=3,AC=4,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn).以下結(jié)論錯(cuò)誤的是( )
A.△ABC是直角三角形
B.AF是△ABC的中位線
C.EF是△ABC的中位線
D.△BEF的周長為6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) O是△ABC外接圓的圓心,若⊙O的半徑為5,∠A=45°,則 的長是( )
A. π
B. π
C. π
D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(4,0),與y軸交于點(diǎn)D(0,﹣2).
(1)求拋物線l2的解析式;
(2)點(diǎn)P為線段AB上一動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)P作y軸的平行線交拋物線l1于點(diǎn)M,交拋物線l2于點(diǎn)N.
①當(dāng)四邊形AMBN的面積最大時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)CM=DN≠0時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=∠AFE,EA是∠BEF的平分線,求證:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com