【題目】為了迎接運動會,某校八年級學生開展了短跑比賽。甲、乙兩人同時從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度。

甲前一半的路程使用速度,另一半的路程使用速度;乙前一半的時間用速度,另一半的時間用速度。

(1)甲、乙二人從A地到達B地的平均速度分別為;則___________,____________

(2)通過計算說明甲、乙誰先到達B地?為什么?

【答案】(1);(2)乙先到達B地.

【解析】

1)設AB兩地的路程為s,乙從A地到B地的總時間為a

先算出前一半的路程所用的時間,后一半的路程所用的時間相加,速度=路程÷時間求出V;

先算出前一半的時間所行的路程后一半的時間所行的路程相加,速度=路程÷時間求出V;

2)看甲、乙兩人誰先到達B因為路程一定,比較VV的大小即可

1)設AB兩地的路程為s,乙從A地到B地的總時間為a

v=,v=

2vv==

0v1v2,vv0,乙先到B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列敘述中:任意一個三角形的三條高至少有一條在此三角形內(nèi)部;ab,c為邊bc都大于0,且可以構成一個三角形;一個三角形內(nèi)角之比為321,此三角形為直角三角形;有兩個角和一條邊對應相等的兩個三角形全等;正確的有  個.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表:

x

﹣3

-

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中m=
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;

(3)觀察函數(shù)圖象,寫出2條函數(shù)的性質(zhì);
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有個交點,所對應的方程x2﹣2|x|=0有個實數(shù)根;
②方程x2﹣2|x|=2有個實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點,∠OAB=30度.

(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連接PA,PB,PC,BP為邊作∠PBQ=60,且BQ=BP,連接CQ.

(1)觀察并猜想APCQ之間的大小關系,并證明你的結論;

(2)PA=3,PB=4,PC=5,連接PQ,試判斷PQC的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,與△EBD相似的三角形是(

A.△ABC
B.△ADE
C.△DAB
D.△BDC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小聰用刻度尺畫已知角的平分線,如圖,在∠MAN兩邊上分別量取AB=AC,AE=AF,連接FC,EB交于點D,作射線AD,則圖中全等的三角形共有________對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù) 的圖象與x軸,y軸分別交于點A、B,與函數(shù)的圖象交于點M,點M的橫坐標為2,在x軸上有一點P(a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)的圖象于點C、D.

(1)求點M、點A的坐標;

(2)若OB=CD,求a的值,并求此時四邊形OPCM的面積.

查看答案和解析>>

同步練習冊答案