正方形ABCD中,∠EAF=45°,BE=3,DF=4,則EF的長(zhǎng)是______.
如圖,把△ABE逆時(shí)針旋轉(zhuǎn)90°得到△ADG,
∴BE=GD,AE=AG,
∵∠EAF=45°,
∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
AE=AG
∠EAF=∠FAG
AF=AF
,
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
∴EF=BE+DF,
∵BE=3,DF=4,
∴EF=BE+DF=7,
故答案為7.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)是2,E、F分別在BC、CD兩邊上,且E、F與BC、CD兩邊的端點(diǎn)不重合,△AEF的面積是1,設(shè)BE=x,DF=y,求y關(guān)于x的函數(shù)解析式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,操作:把正方形CGEF的對(duì)角線CE放在正方形ABCD的邊BC的延長(zhǎng)線上(CG>BC),取線段AE的中點(diǎn)M.
探究:線段MD、MF的關(guān)系,并加以證明.
說(shuō)明:(1)如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫出來(lái)(要求至少寫3步);
(2)在你經(jīng)歷說(shuō)明(1)的過(guò)程后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.
注意:選取①完成證明得10分;選取②完成證明得7分;選、弁瓿勺C明得5分.
①DM的延長(zhǎng)線交CE于點(diǎn)N,且AD=NE;②將正方形CGEF6繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°(如圖),其他條件不變;③在②的條件下,且CF=2AD.
附加題:將正方形CGEF繞點(diǎn)C旋轉(zhuǎn)任意角度后(如圖),其他條件不變.探究:線段MD、MF的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)能與△CBP′重合,若PB=3,則PP′=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為E、F.
(1)求證:DE=DF;
(2)只添加一個(gè)條件,使四邊形EDFA是正方形.請(qǐng)你至少寫出兩種不同的添加方法.(不另外添加輔助線,無(wú)需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABCD是正方形,G是BC上的一點(diǎn),DE⊥AG于E,BF⊥AG于F.
(1)求證:△ABF≌△DAE;
(2)求證:DE=EF+FB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,E為正方形ABCD對(duì)角線AC上一點(diǎn),若AE=BC,則∠BED等于( 。
A.115°B.125°C.135°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)E為正方形ABCD的邊AB上一點(diǎn),點(diǎn)F為邊BC上一點(diǎn),EF=AE+CF,試求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,線段AB=CD=10cm.弧BC和弧DA是弧長(zhǎng)與半徑都相等的圓弧,曲邊三角形BCD的面積,是以D為圓心,DC為半徑的圓面積的
1
4
,則陰影部分的面積是(  )cm2
A.25πB.50πC.100D.200

查看答案和解析>>

同步練習(xí)冊(cè)答案