【題目】如圖,在平面直角坐標系上有個點A(﹣1,0),點A第1次向上跳動1個單位至點A1(﹣1,1),緊接著第2次向右跳動2個單位至點A2(1,1),第3次向上跳動1個單位至點A3,第4次向左跳動3個單位至點A4,第5次又向上跳動1個單位至點A5,第6次向右跳動4個單位至點A6,……,依此規(guī)律跳動下去,點A第2019次跳動至點A2019的坐標是____.
【答案】(505,1010)
【解析】
設第n次跳動至點An,根據(jù)部分點An坐標的變化找出變化規(guī)律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n為自然數(shù))”,依此規(guī)律結合2019=504×4+3即可得出點A2019的坐標.
設第n次跳動至點An,
觀察,發(fā)現(xiàn):A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,
∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n為自然數(shù)).
∵2019=504×4+3,
∴A2019(504+1,504×2+2),即(505,1010).
故答案為(505,1010).
科目:初中數(shù)學 來源: 題型:
【題目】已知:點在直線上,點都在直線上(點在點的左側),連接,平分且
(1)如圖1,求證:
(2)如圖2,點為上一點,連接,若,求的度數(shù)
(3)在(2)的條件下,點在直線上,連接,且,若,求的度數(shù)(要求:在備用圖中畫出圖形后,再計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊和,為的中點,,相交于點.若∠BAC=30°,下列結論:①;②四邊形為平行四邊形;③;④.其中正確結論的序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校美術組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.
(1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?
(2)小亮同學用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間有何關系?說明理由.
(3)若點P在Rt△ABC斜邊BA的延長線上運動(CE<CD),則∠α、∠1、∠2之間有何關系?猜想并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】旅游公司在景區(qū)內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線AB∥DC,點P為平面上一點,連接AP與CP.
(1)如圖1,點P在直線AB、CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC.
(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數(shù)量關系,并說明理由.
(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,∠AKC與∠APC有何數(shù)量關系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com