已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)B(3,﹣2)C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(湖北隨州卷)數(shù)學(xué)(解析版) 題型:填空題

如圖(1),PT與⊙O1相切于點(diǎn)T,PAB與⊙O1相交于A、B兩點(diǎn),可證明△PTA∽△PBT,從而有PT2=PA•PB.請(qǐng)應(yīng)用以上結(jié)論解決下列問題:如圖(2),PAB、PCD分別與⊙O2相交于A、B、C、D四點(diǎn),已知PA=2,PB=7,PC=3,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:解答題

數(shù)學(xué)活動(dòng)課上,某學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試

如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發(fā)現(xiàn)

如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;

(3)深入探究

如圖3,若AD=3AB,探究得:的值為常數(shù)t,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:選擇題

有一枚均勻的正方體骰子,骰子各個(gè)面上的點(diǎn)數(shù)分別為1,2,3, 4,5,6,若任意拋擲一次骰子,朝上的面的點(diǎn)數(shù)記為x,計(jì)算|x﹣4|,則其結(jié)果恰為2的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(四川眉山卷)數(shù)學(xué)(解析版) 題型:解答題

已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,

(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;

(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)若點(diǎn)M為該拋物線上一動(dòng)點(diǎn),在(2)的條件下,請(qǐng)求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(四川眉山卷)數(shù)學(xué)(解析版) 題型:填空題

設(shè)m、n是一元二次方程x2+2x﹣7=0的兩個(gè)根,則m2+3m+n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(四川眉山卷)數(shù)學(xué)(解析版) 題型:選擇題

已知x2﹣3x﹣4=0,則代數(shù)式的值是( )

A.3 B.2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(解析版) 題型:填空題

已知∠AOB=60°,點(diǎn)P是∠AOB的平分線OC上的動(dòng)點(diǎn),點(diǎn)M在邊OA上,且OM=4,則點(diǎn)P到點(diǎn)M與到邊OA的距離之和的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:選擇題

在一些漢字的美術(shù)字中,有的是軸對(duì)稱圖形.下面四個(gè)美術(shù)字中可以看作軸對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案