【題目】海靜中學開展以“我最喜愛的職業(yè)”為主題的調查活動,圍繞“在演員、教師、醫(yī)生、律師、公務員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調查共抽取了多少名學生?

(2)求在被調查的學生中,最喜愛教師職業(yè)的人數(shù),并補全條形統(tǒng)計圖;

(3)若海靜中學共有1500名學生,請你估計該中學最喜愛律師職業(yè)的學生有多少名?

【答案】(1)60;(2)9,圖形見解析;(3)150.

【解析】

試題分析:(1)用演員人數(shù)除以演員所占百分比可得到共抽取了學生總數(shù);(2)用總數(shù)減去其他的人數(shù)可得出教師職業(yè)的人數(shù),再補全統(tǒng)計圖;(3)利用調查學生中最喜愛律師職業(yè)的學生百分比可求出該中學中的相應人數(shù).

試題解析:(1)12÷20%=60,答:共調查了60名學生.(2)60129624=9,答:最喜愛的教師職業(yè)人數(shù)為9人.如圖所示:

(3)(名)答:該中學最喜愛律師職業(yè)的學生有150名.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】國務院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:

獲獎等次

頻數(shù)

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40

請根據(jù)所給信息,解答下列問題:

(1)a= ,b= ,且補全頻數(shù)分布直方圖;

(2)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應的扇形圓心角的度數(shù)是多少?

(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網格線的交點叫格點,格點的邊上的一點(請利用網格作圖,保留作圖痕跡).

(1)過點的垂線,交于點;

(2)線段 的長度是點OPC的距離;

(3)的理由是 ;

(4)過點C的平行線;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學決定在學生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學生對四種項目的喜歡情況,隨機調查了該校m名學生最喜歡的一種項目(每名學生必選且只能選擇四種活動項目的一種),并將調查結果繪制成如下的不完整的統(tǒng)計圖表:

學生最喜歡的活動項目的人數(shù)統(tǒng)計表

項目

學生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%

根據(jù)圖表中提供的信息,解答下列問題:

(1)m= ,n= ,p=

(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;

(3)根據(jù)抽樣調查結果,請你估計該校2000名學生中有多少名學生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】清代·袁牧的一首詩《苔》中的詩句:白日不到處,青春恰自來.苔花如米小,也學牡丹開.”若苔花的花粉直徑約為0.0000084米,則數(shù)據(jù)0.0000084用科學記數(shù)法表示為(

A.8.4×10-5B.8.4×10-6C.84×10-7D.8.4×106

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A﹣2,a)和點Bb,﹣5)關于x軸對稱,則a+b=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P(2,﹣1)關于原點的對稱點坐標為P′(m,1),則m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩條相交直線與另一條直線在同一平面,它們的交點個數(shù)是(
A.1
B.2
C.3或2
D.1或2或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,ABC的頂點A(3,0)、B(0,3),ADBCBCD點,交y軸正半軸于點E(0,t)

1t1時,求C點的坐標;

2如圖2,求∠ADO的度數(shù);

3如圖3,已知點P(0,2),若PQPC,PQPC,求Q的坐標(用含t的式子表示)

1 2 3

查看答案和解析>>

同步練習冊答案