【題目】小夏同學(xué)從家到學(xué)校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:

公交車用時(shí)

頻數(shù)

公交車路線

總計(jì)

59

151

166

124

500

43

57

149

251

500

據(jù)此估計(jì),早高峰期間,乘坐線路用時(shí)不超過(guò)35分鐘的概率為__________,若要在40分鐘之內(nèi)到達(dá)學(xué)校,應(yīng)盡量選擇乘坐__________(填)線路.

【答案】0.2 A

【解析】

根據(jù)題意用“用時(shí)不超過(guò)35分鐘”的人數(shù)除以總?cè)藬?shù)即可求得概率,并且分別求出乘坐B路線用時(shí)不超過(guò)40的概率進(jìn)行比較判斷即可.

解:乘坐路線用時(shí)不超過(guò)35分鐘的概率為,

若乘坐路線用時(shí)不超過(guò)40的概率,

若乘坐路線用時(shí)不超過(guò)40的概率,

故若40分之內(nèi)到達(dá)學(xué)校,應(yīng)盡量選擇乘坐路線.

故答案為:0.2A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)右),與軸交于點(diǎn),且

1)求拋物線的解析式;

2)如圖2,點(diǎn)在第一象限拋物線上,連接,若,求點(diǎn)的坐標(biāo);

3)在(2)的條件下,如圖3,過(guò)點(diǎn)軸,線段經(jīng)過(guò)點(diǎn),與拋物線交于點(diǎn),連接,,點(diǎn)在線段上,連接,交于點(diǎn),點(diǎn)上,連接,交于點(diǎn),若,,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校教務(wù)處為了解九年級(jí)學(xué)生“居家學(xué)習(xí)”的學(xué)習(xí)能力,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們的學(xué)習(xí)能力進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖(其中學(xué)習(xí)能力指數(shù)級(jí)別“1”級(jí),代表學(xué)習(xí)能力很強(qiáng);“2”級(jí),代表學(xué)習(xí)能力較強(qiáng);“3”級(jí),代表學(xué)習(xí)能力一般;“4“級(jí),代表學(xué)習(xí)能力較弱)請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答問(wèn)題.

1)本次抽查的學(xué)生人數(shù)   人,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)本次抽查學(xué)生“居家學(xué)習(xí)”能力指數(shù)級(jí)別的眾數(shù)為   級(jí),中位數(shù)為   級(jí).

3)已知學(xué)習(xí)能力很強(qiáng)的學(xué)生中只有1名女生,現(xiàn)從中隨機(jī)抽取兩人寫有關(guān)“居家學(xué)習(xí)”的報(bào)告,請(qǐng)用列表或畫樹(shù)狀圖的方法求所抽查的兩位學(xué)生中恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A、Dx軸的負(fù)半軸上,點(diǎn)Cy軸的正半軸上,點(diǎn)FAB上,點(diǎn)B、E在反比例函數(shù)yk為常數(shù),k0)的圖象上,正方形ADEF的面積為4,且BF2AF,則k值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于⊙P及一個(gè)矩形給出如下定義:如果⊙P上存在到此矩形四個(gè)頂點(diǎn)距離都相等的點(diǎn),那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的頂點(diǎn)A的坐標(biāo)為(),頂點(diǎn)C、Dx軸上,且OC=OD.

(1)當(dāng)⊙P的半徑為4時(shí),

①在P1),P2,),P3,)中可以成為矩形ABCD的“等距圓”的圓心的是

②如果點(diǎn)P在直線上,且⊙P是矩形ABCD的“等距圓”,求點(diǎn)P的坐標(biāo);

(2)已知點(diǎn)P軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒(méi)有公共點(diǎn),直接寫出點(diǎn)P的縱坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),其對(duì)稱軸與軸交于點(diǎn)

1)求點(diǎn),的坐標(biāo);

2)設(shè)直線與直線關(guān)于該拋物線的對(duì)稱軸對(duì)稱,

①求直線的解析式

②若該拋物線在這一段位于直線的上方,并且在這一段位于直線的下方,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)甲、乙、丙三名業(yè)務(wù)員2018年前5個(gè)月的銷售額(單位:萬(wàn)元)如下表:

月份

銷售額

人員

1

2

3

4

5

6

9

10

8

8

5

7

8

9

9

5

9

10

5

11

1)根據(jù)上表中的數(shù)據(jù),將下表補(bǔ)充完整:

統(tǒng)計(jì)值

數(shù)值

人員

平均數(shù)(萬(wàn)元)

眾數(shù)(萬(wàn)元)

中位數(shù)(萬(wàn)元)

方差

8

8

1.76

7.6

8

2.24

8

5

2)甲、乙、丙三名業(yè)務(wù)員都說(shuō)自己的銷售業(yè)績(jī)好,你贊同誰(shuí)的說(shuō)法?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形的三個(gè)頂點(diǎn)分別落在反比例函數(shù)的圖象上,并且底邊經(jīng)過(guò)原點(diǎn),__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱為極點(diǎn);從點(diǎn)O出發(fā)引一條射線Ox稱為極軸;線段OM的長(zhǎng)度稱為極徑.點(diǎn)M的極坐標(biāo)就可以用線段OM的長(zhǎng)度以及從Ox轉(zhuǎn)動(dòng)到OM的角度(規(guī)定逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)角度為正)來(lái)確定,即M430°)或M4,-330°)或M4390°)等,則下列說(shuō)法錯(cuò)誤的是( ).

A.點(diǎn)M關(guān)于x軸對(duì)稱點(diǎn)M1的極坐標(biāo)可以表示為M14-30°

B.點(diǎn)M關(guān)于原點(diǎn)O中心對(duì)稱點(diǎn)M2的極坐標(biāo)可以表示為M24,570°

C.以極軸Ox所在直線為x軸建立如圖所示的平面直角坐標(biāo)系,則極坐標(biāo)M430°)轉(zhuǎn)化為平面直角坐標(biāo)的坐標(biāo)為M2,2

D.把平面直角坐標(biāo)系中的點(diǎn)N-4,4)轉(zhuǎn)化為極坐標(biāo),可表示為N,135°

查看答案和解析>>

同步練習(xí)冊(cè)答案