【題目】尺規(guī)作圖特有的魅力曾使無(wú)數(shù)人沉湎其中,連當(dāng)年叱咤風(fēng)云的拿破侖也不例外,我們可以只用圓規(guī)將圓等分.例如可將圓6等分,如圖只需在⊙O上任取點(diǎn)A,從點(diǎn)A開(kāi)始,以⊙O的半徑為半徑,在⊙O上依次截取點(diǎn)B,C,D,E,F(xiàn).從而點(diǎn)A,B,C,D,E,F(xiàn)把⊙O六等分.下列可以只用圓規(guī)等分的是( ) ①兩等分 ②三等分 ③四等分 ④五等分.

A.②
B.①②
C.①②③
D.①②③④

【答案】D
【解析】解:可以將圓①兩等分 ②三等分 ③四等分 ④五等分. 五等分的步驟:
(i)設(shè)該圓中心為O點(diǎn),做圓O直徑AB;
(ii)在此圓中再作一直徑CD,使CD垂直于A(yíng)B;
(iii)以半徑OA的中點(diǎn)M為圓心,以MC為半徑作弧交線(xiàn)段AB于點(diǎn)N;
(iv)連結(jié)NC.則線(xiàn)段NC即該圓的內(nèi)接正五邊形邊長(zhǎng).
故選D.
利用圓規(guī)可以將圓①兩等分 ②三等分 ③四等分 ④五等分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列等式成立的是(

A. (-x2)3·(-4x)2=(2x2)8

B. (1.7a2x)·(ax4)=1.1a3x5

C. (0.5a)3·(-10a3)3=(-5a4)5

D. (2×108)×(5×107)=1016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線(xiàn)段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線(xiàn)段;

2)求AC的長(zhǎng);

3)若點(diǎn)E在直線(xiàn)AB上,且EA2cm,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線(xiàn)交BC于點(diǎn)D,點(diǎn)O在A(yíng)B上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn). (Ⅰ)試判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)若BD=2 ,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為3的正六邊形鐵絲框ABCDEF變形為以點(diǎn)A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)).則所得扇形AFB(陰影部分)的面積為(
A.6π
B.18
C.18π
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示已知,OM平分ON平分;

(1);

(2)如圖∠AOB900,將OCO點(diǎn)向下旋轉(zhuǎn),使∠BOC,仍然分別作∠AOC,∠BOC的平分線(xiàn)OMON,能否求出∠MON的度數(shù),若能,求出其值,若不能,試說(shuō)明理由.

(3),,仍然分別作∠AOC,∠BOC的平分線(xiàn)OMON,能否求出∠MON的度數(shù),若能,求的度數(shù);并從你的求解中看出什么什么規(guī)律嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有以下3句話(huà):①AB∥CD,②∠B=∠C、③∠E=∠F、請(qǐng)以其中2句話(huà)為條件,第三句話(huà)為結(jié)論構(gòu)造命題.

(1)你構(gòu)造的是哪幾個(gè)命題?

(2)你構(gòu)造的命題是真命題還是假命題?請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角△ABC內(nèi)接于⊙O,點(diǎn)D在⊙O外(與點(diǎn)C在A(yíng)B同側(cè)),∠ABD=90°,下列結(jié)論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結(jié)論為(
A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案