【題目】在△ABC中,∠B=15°,∠C=90°,AB的垂直平分線(xiàn)交AB于點(diǎn)M,交BC于點(diǎn)N.已知BM=12cm,求AC的長(zhǎng).

【答案】解:連接NA, ∵M(jìn)N是線(xiàn)段AB的垂直平分線(xiàn),
∴MA=MB=12cm,NA=NB,
∴∠MAN=∠B=15°,
∵∠ANC是△ABN的外角,
∴∠ANC=15°+15°=30°,
∴Rt△ACN中,AC= AN,
設(shè)AC=x,則AN=2x=BN,CN= x,
∵在Rt△ABC中,AC2+BC2=AB2
∴x2+(2x+ x)2=242 ,
解得x=12
故AC的長(zhǎng)為12

【解析】連接NA,由MN是線(xiàn)段AB的垂直平分線(xiàn)可知,NA=NB,∠1=∠B,再根據(jù)∠2是△ABN的外角可得出∠2的度數(shù),在Rt△ACN中根據(jù)∠2=30°可知AC= AN,根據(jù)勾股定理可得出結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用線(xiàn)段垂直平分線(xiàn)的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四人參加訓(xùn)練,近期的10次百米測(cè)試平均成績(jī)都是13.2s,方差如下表:

選手

方差(s2)

0.020

0.019

0.021

0.022

則這四人中發(fā)揮最穩(wěn)定的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將二次函數(shù)yx2的圖象向上平移1個(gè)單位,再向右平移2個(gè)單位所得圖象的解析式是( 。

A.y=(x+22+1B.y=(x22+1C.y=(x221D.y=(x+221

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線(xiàn),切點(diǎn)為BCO平行于弦AD,作直線(xiàn)DC

(1)求證:DC為⊙O切線(xiàn);

(2) AD·OC=8,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,是真命題的為(
A.四個(gè)角相等的四邊形是矩形
B.四邊相等的四邊形是正方形
C.對(duì)角線(xiàn)相等的四邊形是菱形
D.對(duì)角線(xiàn)互相垂直的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)3+(﹣11)﹣(﹣9)

(2)(﹣7)×5﹣(﹣36)÷4

3)(1+×24

414+×[2×642]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2a的平方根是±2,3是3ab的立方根,求a-2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家生產(chǎn)的一種新型節(jié)能燈,為了打開(kāi)市場(chǎng)出臺(tái)了相關(guān)政策:由廠家協(xié)調(diào),廠家按成本價(jià)提供產(chǎn)品給經(jīng)營(yíng)戶(hù)自主銷(xiāo)售,成本價(jià)與出廠價(jià)之間的差價(jià)由廠家承擔(dān).李明按照相關(guān)政策投資銷(xiāo)售本產(chǎn)品.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系近似滿(mǎn)足一次函數(shù):y=﹣10x+500

1)李明在開(kāi)始銷(xiāo)售的第一個(gè)月將銷(xiāo)售單價(jià)定為20元,那么廠家這個(gè)月為他承擔(dān)的總差價(jià)為多少元?

2設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

3)物價(jià)部門(mén)規(guī)定,這種節(jié)能燈的銷(xiāo)售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么廠家為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是

(2)如圖2,若P是線(xiàn)段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線(xiàn)段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若點(diǎn)P是線(xiàn)段CB延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫(xiě)出DE、BF、BP三者之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案