【題目】如圖:在等邊三角形ABC中,點(diǎn)E在線段AB上,點(diǎn)D在CB的延長(zhǎng)線上,
(1)試證明△DEC是等腰三角形;(2)在圖中找出與AE相等的線段,并證明
【答案】(1)證明見解析;(2)BD=AE,證明見解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得∠ABC=∠ACB,由三角形外角的性質(zhì)可得∠ABC=∠D+∠DEB,再根據(jù)∠ACB=∠ACE+∠ECB,∠ACE=∠DEB,推得∠D=∠ECB即可得到結(jié)論;
(2)圖中BD=AE,證明過(guò)程為:在AC上截取AF=AE,則可得△AEF是等邊三角形,通過(guò)推導(dǎo)得出BE=CF,AE=EF,∠EFC=∠DBE,然后利用ASA證明△DEB≌△ECF,根據(jù)全等三角形的性質(zhì)以及等量代換即可得.
(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵∠ABC是△DBE的外角,
∴∠ABC=∠D+∠DEB,
∵∠ACB=∠ACE+∠ECB,∠ACE=∠DEB,
∴∠D=∠ECB,
∴ED=EC,
即△DEC是等腰三角形;
(2)BD=AE,證明如下:
如圖,在AC上截取AF=AE,
∵△ABC是等邊三角形,
∴∠A=∠ABC=60°,AB=AC,
∴∠EBD=120°,AB-AE=AC-AF,△AEF是等邊三角形,
∴BE=CF,AE=EF,∠AFE=60°,
∴∠EFC=120°,
∴∠EFC=∠DBE,
在△DBE和△EFC中,
,
∴△DEB≌△ECF,
∴BD=EF,
∴BD=AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 知識(shí)儲(chǔ)備
①如圖 1,已知點(diǎn) P 為等邊△ABC 外接圓的弧BC 上任意一點(diǎn).求證:PB+PC= PA.
②定義:在△ABC 所在平面上存在一點(diǎn) P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn) P 為△ABC
的費(fèi)馬點(diǎn),此時(shí) PA+PB+PC 的值為△ABC 的費(fèi)馬距離.
(2)知識(shí)遷移
①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
如圖 2,在△ABC 的外部以 BC 為邊長(zhǎng)作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長(zhǎng)度即為△ABC 的費(fèi)馬距離.
②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費(fèi)馬點(diǎn) P(要求尺規(guī)作圖).
(3)知識(shí)應(yīng)用
①判斷題(正確的打√,錯(cuò)誤的打×):
ⅰ.任意三角形的費(fèi)馬點(diǎn)有且只有一個(gè)(__________);
ⅱ.任意三角形的費(fèi)馬點(diǎn)一定在三角形的內(nèi)部(__________).
②已知正方形 ABCD,P 是正方形內(nèi)部一點(diǎn),且 PA+PB+PC 的最小值為,求正方形 ABCD 的
邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點(diǎn)A落在A′的位置,若OB=,tan∠BOC=,則點(diǎn)A′的坐標(biāo)( 。
A. (,) B. (﹣,) C. (﹣,) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA邊上的中點(diǎn),連結(jié)AC、BD,回答問題
(1)對(duì)角線AC、BD滿足條件_____時(shí),四邊形EFGH是矩形.
(2)對(duì)角線AC、BD滿足條件_____時(shí),四邊形EFGH是菱形.
(3)對(duì)角線AC、BD滿足條件_____時(shí),四邊形EFGH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某摩托車廠本周計(jì)劃每日生產(chǎn)450輛摩托車,由于工人實(shí)行輪休, 每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表: [增加的輛數(shù)為正數(shù),減少的輛數(shù)為負(fù)數(shù)]
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 | -5 | +7 | -3 | +4 | +10 | -9 | -25 |
(1)本周星期六生產(chǎn)多少輛摩托車?
(2)本周總產(chǎn)量與計(jì)劃產(chǎn)量相比,是增加了還是減少了?為什么?
(3)產(chǎn)量最多的那天比產(chǎn)量最少的那天多生產(chǎn)多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD、BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn).
(1)求證:BM=CM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)矩形ABCD的長(zhǎng)和寬滿足什么條件時(shí),四邊形MENF是正方形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的中線BE,CD相交于點(diǎn)O,若△DOE的面積為1cm2,則△ABC的面積為( )
A. 12B. 8C. 6D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)內(nèi)有一塊如圖所示的三角形空地ABC,計(jì)劃將這塊空地建成一個(gè)花園,以美化小區(qū)環(huán)境,預(yù)計(jì)花園每平方米造價(jià)為25元,小區(qū)修建這個(gè)花園需要投資多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com