已知:某一直線過點(diǎn)(-2,5)且它和直線y=-2x+3與y軸交于同一點(diǎn),則此直線的函數(shù)關(guān)系式為______.
設(shè)該直線的函數(shù)關(guān)系式為y=kx+b,
∵所求直線與y=-2x+3和y軸交于同一點(diǎn),
∴b=3,
又因?yàn)橹本過(-2,5),代入y=kx+3中,
解得k=-1,
∴此直線的函數(shù)關(guān)系式為y=-x+3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、已知:某一直線過點(diǎn)(-2,5)且它和直線y=-2x+3與y軸交于同一點(diǎn),則此直線的函數(shù)關(guān)系式為
y=-x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請(qǐng)說明理由.
(4)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)如圖,把兩個(gè)全等的Rt△AOB和Rt△ECD分別置于平面直角坐標(biāo)系xOy中,使點(diǎn)E與點(diǎn)B重合,直角邊OB、BC在y軸上.已知點(diǎn)D (4,2),過A、D兩點(diǎn)的直線交y軸于點(diǎn)F.若△ECD沿DA方向以每秒
2
個(gè)單位長度的速度勻速平移,設(shè)平移的時(shí)間為t(秒),記△ECD在平移過程中某時(shí)刻為△E′C′D′,E′D′與AB交于點(diǎn)M,與y軸交于點(diǎn)N,C′D′與AB交于點(diǎn)Q,與y軸交于點(diǎn)P(注:平移過程中,點(diǎn)D′始終在線段DA上,且不與點(diǎn)A重合).
(1)求直線AD的函數(shù)解析式;
(2)試探究在△ECD平移過程中,四邊形MNPQ的面積是否存在最大值?若存在,求出這個(gè)最大值及t的取值;若不存在,請(qǐng)說明理由;
(3)以MN為邊,在E′D′的下方作正方形MNRH,求正方形MNRH與坐標(biāo)軸有兩個(gè)公共點(diǎn)時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知:某一直線過點(diǎn)(-2,5)且它和直線y=-2x+3與y軸交于同一點(diǎn),則此直線的函數(shù)關(guān)系式為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案