【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC的平分線,∠EAD=15°,∠B=40°.
(1)求∠C的度數(shù).
(2)若:∠EAD=α,∠B=β,其余條件不變,直接寫出用含α,β的式子表示∠C的度數(shù).
【答案】(1)70°;(2)∠C=β+2α.
【解析】
(1)根據(jù)三角形的內(nèi)角和定理求出∠BAD,求出∠BAE,根據(jù)角平分線的定義求出∠BAC,即可求出答案;
(2)根據(jù)三角形的內(nèi)角和定理求出∠BAD,求出∠BAE,根據(jù)角平分線的定義求出∠BAC,即可求出答案.
(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°,
∵∠B=40°,
∴∠BAD=90°-40°=50°,
∵∠EAD=15°,
∴∠BAE=50°-15°=35°,
∵AE平分∠BAC,
∴∠CAE=∠BAE=∠BAC=35°,
∴∠BAC=70°,
∴∠C=180°-∠BAC-∠B=180°-70°-40°=70°;
(2)∵AD⊥BC,
∴∠ADC=∠ADB=90°,
∵∠B=β,
∴∠BAD=90°-β,
∵∠EAD=α,
∴∠BAE=90°-β-α,
∵AE平分∠BAC,
∴∠CAE=∠BAE=∠BAC=90°-β-α,
∴∠BAC=180°-2β-2α,
∴∠C=180°-∠BAC-∠B=180°-(180°-2β-2α)-β=β+2α.
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.
(1)求∠DOA的度數(shù);
(2)求證:直線ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)3+()+()+();
(2)25.7+(-7.3)+(-13.7)+7.3;
(3)(-2.125)+()+()+(-3.2);
(4)(-0.8)+6.4+(-9.2)+3.6+(-1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一根長2a的木棍,斜靠在與地面垂直的墻上,設(shè)木棍的中點為若木棍A端沿墻下滑,且B端沿地面向右滑行.
請判斷木棍滑動的過程中,點P到點O的距離是否變化,并簡述理由.
在木棍滑動的過程中,當滑動到什么位置時,的面積最大?簡述理由,并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,BE=1,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則EC的長為( 。
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃組織師生共435人參加一次大型公益活動,如果租用5輛小客車和6輛大客車恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多12個.
(1) 求每輛小客車和每輛大客車的乘客座位數(shù);
(2) 由于最后參加活動的人數(shù)增加了20人,學校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為將所有參加活動的師生裝載完成,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當AE= cm時,四邊形CEDF是矩形;
②當AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,D是△ABC的BC邊的中點,DE⊥AC,DF⊥AB,垂足分別是E、F,且BF=CE
求證:(1)△ABC是等腰三角形
(2)當∠A=90°時,試判斷四邊形AFDE是怎樣的四邊形,證明你的結(jié)論
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com