(2013•臨沂)如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( 。
分析:由點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),得到BE=CF=t,則CE=8-t,再根據(jù)正方形的性質(zhì)的OB=OC,∠OBC=∠OCD=45°,然后根據(jù)“SAS”可判斷△OBE≌△OCF,所以S△OBE=S△OCF,這樣S四邊形OECF=S△OBC=16,于是S=S四邊形OECF-S△CEF=16-
1
2
(8-t)•t,然后配方得到S=
1
2
(t-4)2+8(0≤t≤8),最后利用解析式和二次函數(shù)的性質(zhì)對(duì)各選項(xiàng)進(jìn)行判斷.
解答:解:根據(jù)題意BE=CF=t,CE=8-t,
∵四邊形ABCD為正方形,
∴OB=OC,∠OBC=∠OCD=45°,
∵在△OBE和△OCF中
OB=OC
∠OBE=∠OCF
BE=CF
,
∴△OBE≌△OCF(SAS),
∴S△OBE=S△OCF,
∴S四邊形OECF=S△OBC=
1
4
×82=16,
∴S=S四邊形OECF-S△CEF=16-
1
2
(8-t)•t=
1
2
t2-4t+16=
1
2
(t-4)2+8(0≤t≤8),
∴s(cm2)與t(s)的函數(shù)圖象為拋物線一部分,頂點(diǎn)為(4,8),自變量為0≤t≤8.
故選B.
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象:先根據(jù)幾何性質(zhì)得到與動(dòng)點(diǎn)有關(guān)的兩變量之間的函數(shù)關(guān)系,然后利用函數(shù)解析式和函數(shù)性質(zhì)畫出其函數(shù)圖象,注意自變量的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂)如圖,已知AB∥CD,∠2=135°,則∠1的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂)如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的側(cè)面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂)如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂)如圖,拋物線經(jīng)過(guò)A(-1,0),B(5,0),C(0,-
52
)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案