【題目】如圖,點A(1,2)在反比例函數上,B為反比例函數圖象上一點,不與A重合,當以OB為直徑的圓經過A點,點B的坐標為___________.
【答案】(4,0.5)
【解析】
將點A(1,2)代入,求得反比例函數解析式為,設點B ,連接AB,過點A作x軸的平行線,交y軸于點C,過點B作y軸的平行線,交直線AC于點D,則∠OCA=∠D=90°,根據OB為圓的直徑,∠OAB=90°,容易得到△AOC∽△BAD,所以有,即: ,化簡求值即可.
解:將點A(1,2)代入,得:,
則反比例函數解析式為,
設點B
如圖,連接AB,過點A作x軸的平行線,交y軸于點C,過點B作y軸的平行線,交直線AC于點D,
則∠OCA=∠D=90°,
∴∠AOC+∠OAC=90°,
∵OB為圓的直徑,
∴∠OAB=90°,
∴∠OAC+∠BAD=90°,
∴∠AOC=∠BAD,
則△AOC∽△BAD,
∴,即: ,
解得:m=1(舍)或m=4,
則點B點坐標為:(4,0.5).
科目:初中數學 來源: 題型:
【題目】用適當的方法解下列方程:
(1)(x-1)2﹣9=0;
(2)3(x+5)=(x+5)2;
(3)x2+6x-55=0;
(4)2x(x+3)-1=0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將平行四邊形ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:AC=BE;
(2)若∠AFC=2∠D,連接AC,BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果店銷售一種水果的成本價是元/千克.在銷售過程中發(fā)現,當這種水果的價格定在元/千克時,每天可以賣出千克.在此基礎上,這種水果的單價每提高元/千克,該水果店每天就會少賣出千克.
若該水果店每天銷售這種水果所獲得的利潤是元,則單價應定為多少?
在利潤不變的情況下,為了讓利于顧客,單價應定為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+2x+3的頂點為D,它與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.
(1)求頂點D的坐標;
(2)求直線BC的解析式;
(3)求△BCD的面積;
(4)當點P在直線BC上方的拋物線上運動時,△PBC的面積是否存在最大值?若存在,請求出這個最大值,并且寫出此時點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數;
(2)求證:AE2=EFED;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com