【題目】200851日,目前世界上最長的跨海大橋——杭州灣跨海大橋通車了.通車后,蘇南A地到寧波港的路程比原來縮短了120千米.已知運(yùn)輸車速度不變時(shí),行駛時(shí)間將從原來的3時(shí)20分縮短到2時(shí).

(1)求跨海大橋到寧波港的路程.

(2)若貨物運(yùn)輸費(fèi)用=A地經(jīng)杭州灣包括運(yùn)輸成本和時(shí)間成本,已知某車貨物從A地到寧波港的運(yùn)輸成本是每千米1.8元,時(shí)間成本是每時(shí)28元,那么該車貨物從A地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是多少元?

(3)A地準(zhǔn)備開辟寧波方向的外運(yùn)路線,即貨物從A地經(jīng)杭州灣跨海大橋到寧波港,再從寧波港運(yùn)到B地.若有一批貨物(不超過10車)從A地按外運(yùn)路線運(yùn)到B地的運(yùn)費(fèi)需8320元,其中從A地經(jīng)杭州灣跨海大橋到寧波港的每車運(yùn)輸費(fèi)用與(2)中相同,從寧波港到B地的海上運(yùn)費(fèi)對一批不超過10車的貨物計(jì)費(fèi)方式是:一車800元,當(dāng)貨物每增加1車時(shí),每車的海上運(yùn)費(fèi)就減少20元,問這批貨物有幾車?

【答案】1A地經(jīng)杭州灣跨海大橋到寧波港的路程為180千米。

2)貨物從A地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是380元。

3)這批貨物有8.

【解析】

1)設(shè)A地經(jīng)杭州灣跨海大橋到寧波港的路程為千米,根據(jù)速度不變列方程求解

2)運(yùn)輸成本加時(shí)間成本即可求得貨物運(yùn)輸費(fèi)用

3)設(shè)這批貨物有車,根據(jù)題意列方程求解

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,以點(diǎn)為圓心,的長為半徑畫弧,與邊交于點(diǎn),將 繞點(diǎn)旋轉(zhuǎn)后點(diǎn)與點(diǎn)恰好重合,則圖中陰影部分的面積為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形為平行四邊形,為坐標(biāo)原點(diǎn),,將平行四邊形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到平行四邊形,點(diǎn)的延長線上,點(diǎn)落在軸正半軸上.

(1)證明:是等邊三角形:

(2)平行四邊形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)的對應(yīng)線段為,點(diǎn)的對應(yīng)點(diǎn)為

①直線軸交于點(diǎn),為等腰三角形,求點(diǎn)的坐標(biāo):

②對角線在旋轉(zhuǎn)過程中設(shè)點(diǎn)坐標(biāo)為,當(dāng)點(diǎn)軸的距離大于或等于時(shí),求的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一副三角板如圖放置,E是AB的中點(diǎn),連接CE、DE、CD,F(xiàn)是CD的中點(diǎn),連接EF.若AB=8,則SCEF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一元二次方程,下列說法:①若a+c=0,方程有兩個(gè)不等的實(shí)數(shù)根;②若方程有兩個(gè)不等的實(shí)數(shù)根,則方程也一定有兩個(gè)不等的實(shí)數(shù)根;③若c是方程的一個(gè)根,則一定有成立;④若m是方程的一個(gè)根,則一定有成立.其中正確地只有 ( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).已知拋物線是常數(shù)),頂點(diǎn)為.

(Ⅰ)當(dāng)拋物線經(jīng)過點(diǎn)時(shí),求頂點(diǎn)的坐標(biāo);

(Ⅱ)若點(diǎn)軸下方,當(dāng)時(shí),求拋物線的解析式;

(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點(diǎn).當(dāng)時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Py軸的正半軸上,⊙Px軸于B、C兩點(diǎn),以AC為直角邊作等腰RtACD,BD分別交y軸和⊙PEF兩點(diǎn),連接ACFC

(1)求證:∠ACF=ADB;

(2)若點(diǎn)ABD的距離為m,BF+CF=n,求線段CD的長;

(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,BC=8 AB=6cm,動點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動.若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動過程中,△PBQ的最大面積是(   )

A. 18cm2 B. 12cm2 C. 9cm2 D. 3cm2

查看答案和解析>>

同步練習(xí)冊答案