如圖,直線AC∥BD,連結(jié)AB,直線AC、BD把之間的平面分成①、②兩個(gè)部分,規(guī)定線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連結(jié)PA、PB構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角.
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),試說(shuō)明:∠APB=∠PAC+∠PBD;(提示:過(guò)點(diǎn)P作直線與AC平行)
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),請(qǐng)畫(huà)出相應(yīng)的圖形.試探究∠APB、∠PAC、∠PBD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(1)作PQ∥AC,則 PQ∥AC∥BD,根據(jù)平行線的性質(zhì)可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;(2)∠APB+∠APC+∠PBD=360°
解析試題分析:(1)作PQ∥AC,則 PQ∥AC∥BD,根據(jù)平行線的性質(zhì)可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;
(2)根據(jù)平行線的性質(zhì)可得∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,即可得到結(jié)果.
(1)作PQ∥AC,則 PQ∥AC∥BD
∴∠APQ﹦∠CAP,∠BPQ﹦∠DPB
∴∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD
(2)∠APB+∠APC+∠PBD=360°
∵PQ∥AC∥BD
∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°
∴∠APB+∠APC+∠PBD=360°.
考點(diǎn):平行線的性質(zhì)
點(diǎn)評(píng):解題的關(guān)鍵是讀懂題意及圖形,正確作出輔助線,同時(shí)熟練掌握兩直線平行,同位角相等,兩直線平行,內(nèi)錯(cuò)角相等,兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com