【題目】如圖,在平面直角坐標(biāo)系中,長方形的頂點在坐標(biāo)原點,頂點分別在軸,軸的正半軸上,,為邊的中點,是邊上的一個動點,當(dāng)的周長最小時,點的坐標(biāo)為_________.
【答案】(1,0)
【解析】
作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,用待定系數(shù)法,求出直線CD′的解析式,然后求得與x軸的交點坐標(biāo)即可.
作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,
∵OB=4,OA=3,D是OB的中點,
∴OD=2,則D的坐標(biāo)是(0,2),C的坐標(biāo)是(3,4),
∴D′的坐標(biāo)是(0,-2),
設(shè)直線CD′的解析式是:y=kx+b(k≠0),
則
解得:,
則直線的解析式是:y=2x-2,
在解析式中,令y=0,得到2x-2=0,
解得x=1,
則E的坐標(biāo)為(1,0),
故答案為:(1,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張對邊互相平行的紙條,折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論正確的有( )
(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC.
(1)如圖1,若AB=3 ,BC=5,求AC的長;
(2)如圖2,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路,小明從甲地出發(fā)沿公路步行前往乙地,同時小亮從乙地出發(fā)沿公路騎車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為(m),小亮與甲地的距離為(m),小明與小亮之間的距離為(m),小明行走的時間為(min).,與之間的函數(shù)圖象如圖①,與之間的函數(shù)圖象(部分)如圖②.
(1)求小亮從乙地到甲地過程中(m)與(min)之間的函數(shù)表達(dá)式;
(2)求小亮從甲地返回到與小明相遇的過程中(m)與( min)之間的函數(shù)表達(dá)式;
(3)在圖②中,補全整個過程中(m)與(min)之間的函數(shù)圖象,并確定的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號的轎車,用300萬元可購進(jìn)A型轎車10輛,B型轎車15輛;用300萬元可購進(jìn)A型轎車8輛,B型轎車18輛.
(1)求A、B兩種型號的轎車每輛分別多少元?
(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準(zhǔn)備用不超過400萬元購進(jìn)A、B兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小龍在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的家庭收入情況. 他從中隨機調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1600≤<1800 | 2 | |
合計 | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表.
(2)補全頻數(shù)分布直方圖.
(3)繪制相應(yīng)的頻數(shù)分布折線圖.
(4)請你估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)某校為了解學(xué)生體質(zhì)情況,從各年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行體能測試.
每個學(xué)生的測試成績按標(biāo)準(zhǔn)對應(yīng)為優(yōu)秀、良好、及格、不及格四個等級.統(tǒng)計員在將測試數(shù)據(jù)繪制 成圖表時發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如下圖表.請按正確數(shù)據(jù)解答下列各題:
(1)填寫統(tǒng)計表.
(2)根據(jù)調(diào)整后數(shù)據(jù),補全條形統(tǒng)計圖.
(3)若該校共有學(xué)生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南水北調(diào)工程中線自2014年12月正式通水以來,沿線多座大中城市受益,河南、河北、北京及天津四個。ㄊ校┑乃Y源緊張態(tài)勢得到緩解,有效促進(jìn)了地下水資源的涵養(yǎng)和恢復(fù).若與上年同期相比,北京地下水的水位下降記為負(fù),回升記為正,記錄從2013年底以來,北京地下水水位的變化得到下表:
時間 | 2013年底 | 2014年底 | 2015年底 | 2016年底 | 2017年底 | 2018年9月底 |
地下水位與上年同比變化量(單位:) | -0.25 | -1.14 | -0.09 | +0.52 | +0.26 | +2.12 |
以下關(guān)于2013年以來北京地下水水位的說法不正確的是( )
A. 從2014年底開始,北京地下水水位的下降趨勢得到緩解
B. 從2015年底到2016年底,北京地下水水位首次回升
C. 2013年以來,每年年底的地下水位與上年同比的回升量最大的是2018年
D. 2018年9月底的地下水位低于2012年底的地下水水位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,操場的兩端為半圓形,中間是一個長方形. 已知半圓的半徑為r,直跑道的長為l,請用關(guān)于r,l的多項式表示這個操場的面積. 這個多項式能分解因式嗎?若能,請把它分解因式,并計算當(dāng)r=40m,l=30πm時操場的面積(結(jié)果保留π);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com