(2012•樂山)若實(shí)數(shù)a、b、c滿足a+b+c=0,且a<b<c,則函數(shù)y=ax+c的圖象可能是( 。
分析:先判斷出a是負(fù)數(shù),c是正數(shù),然后根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系確定圖象經(jīng)過的象限以及與y軸的交點(diǎn)的位置即可得解.
解答:解:∵a+b+c=0,且a<b<c,
∴a<0,c>0,(b的正負(fù)情況不能確定),
a<0,則函數(shù)y=ax+c圖象經(jīng)過第二四象限,
c>0,則函數(shù)y=ax+c的圖象與y軸正半軸相交,
縱觀各選項(xiàng),只有A選項(xiàng)符合.
故選A.
點(diǎn)評:本題主要考查了一次函數(shù)圖象與系數(shù)的關(guān)系,先確定出a、c的正負(fù)情況是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=
k
x
(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)點(diǎn)N(a,1)是反比例函數(shù)y=
k
x
(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)G.
①求證:BD⊥CF;
②當(dāng)AB=4,AD=
2
時(shí),求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求證:OF•DE=OE•2OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山模擬)在銳角△ABC中,AB=AC,∠A使關(guān)于x的方程
1
4
x2-sinA•x+
3
sinA-
3
4
=0有兩個(gè)相等的實(shí)數(shù)根.
(1)判斷△ABC的形狀;
(2)設(shè)D為BC上的一點(diǎn),且DE⊥AB于E,DF⊥AC于F,若DE=m,DF=n,且3m=4n和m2+n2=25,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案