【題目】如圖,在平面直角坐標系xOy中,有一個等腰直角三角形AOB,∠OAB= 90° ,直角邊AO在x軸上,且AO= 1.將 Rt△AOB繞原點O順時針旋轉90° 得到等腰直角三角形A1OB1,且A1O= 2AO,再將Rt△A1OB1繞原點O順時針旋轉90°得到等腰直角三角形A2OB2,且A2O=2A1O......依此規(guī)律,得到等腰直角三角形A2018OB2018 ,則點A2018的坐標為__________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.
(1)求拋物線的解析式.
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半徑長為1,已知點P是△ABC邊上一動點(可以與頂點重合)
(1)若點P到⊙C的切線長為,則AP的長度為 ;
(2)若點P到⊙C的切線長為m,求點P的位置有幾個?(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題解決)
一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點B逆時針旋轉90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點B順時針旋轉90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請參考小明的思路,任選一種寫出完整的解答過程.
(類比探究)
如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經過市場銷售后發(fā)現(xiàn):在一個月內,當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式;并求出自變量x的取值范圍;
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)求證:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3分別交 x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內的一個交點,PB⊥x軸于B,且S△ABP=16.
(1)求證:△AOC∽△ABP;
(2)求點P的坐標;
(3)設點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側,作QD⊥x軸于D,當△BQD與△AOC相似時,求點Q的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com