【題目】如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為 ,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( )

A.16
B.15
C.14
D.13

【答案】C
【解析】解:如圖,開口向下,經(jīng)過點(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,
然后向右平移1個單位,向上平移1個單位一次得到一條拋物線,
可平移6次,
所以,一共有7條拋物線,
同理可得開口向上的拋物線也有7條,
所以,滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是:7+7=14.
故選:C.

根據(jù)在OB上的兩個交點之間的距離為3 可知兩交點的橫坐標的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個單位,向上平移1個單位得到開口向下的拋物線的條數(shù),同理可得開口向上的拋物線的條數(shù),然后相加即可得解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)家為了推測最適合某種珍奇植物生長的溫度,將這種植物分別放在不同溫度的環(huán)境中,經(jīng)過一定時間后,測試出這種植物高度的增長情況,部分數(shù)據(jù)如表:

溫度t/℃

﹣4

﹣2

0

1

4

植物高度增長量l/mm

41

49

49

46

25

科學(xué)家經(jīng)過猜想、推測出l與t之間是二次函數(shù)關(guān)系.由此可以推測最適合這種植物生長的溫度為℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個“Z”型的工件(工件厚度忽略不計),如圖示,其中AB為20cm,BC為60cm,∠ABC=90°,∠BCD=50°,求該工件如圖擺放時的高度(即A到CD的距離).(結(jié)果精確到0.1m,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點D是AB的中點,連接CD,過點B作BG⊥CD,分別交CD,CA于點E,F(xiàn),與過點A且垂直于AB的直線相交于點G,連接DF,給出以下五個結(jié)論: ① ;②∠ADF=∠CDB;③點F是GE的中點;④AF= AB;⑤SABC=5SBDF ,
其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公路(可視為)的同一側(cè)有A、B、C三個村莊,要在公路邊建一貨棧D,向A、B、C三個村莊送農(nóng)用物資,路線是D→A→B→C→DD→C→B→A→D.試問在公路邊是否存在一點D,使送貨路線之和最短?若存在,請在圖中畫出點D所在的位置,簡要說明作法;若不存在,請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于點O,點P、D分別在AO和BC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE.

(1)理清思路完成解答
本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點P是一個動點,點P運動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運動到點D′,請直接寫出CD′與AP′的數(shù)量關(guān)系.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P的運動時間為t,t的值為( )秒時,△ABP△DCE全等.

A. 1 B. 13 C. 17 D. 37

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: ﹣4cos45°+( 1+|﹣2|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ab,且ab之間的距離為4,點A到直線a的距離為2,點B到直線b的距離為3,AB.試在直線a上找一點M,在直線b上找一點N,滿足MNaAM+MN+NB的長度和最短,則此時AM+NB=(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習冊答案