【題目】計算:
(1)(﹣2)2+ ﹣(﹣ 0
(2)(2x+1)(2x﹣1)﹣4(x+1)2

【答案】
(1)解:原式= +2﹣1=
(2)解:原式=4x2﹣1﹣4(x2+2x+1),

=4x2﹣1﹣4x2﹣8x﹣4,

=﹣8x﹣5


【解析】(1)先計算負整數(shù)指數(shù)冪,開立方,零指數(shù)冪;然后計算加減法;(2)利用平方差公式、完全平方公式計算括號內(nèi)的式子,然后去括號.
【考點精析】認(rèn)真審題,首先需要了解零指數(shù)冪法則(零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))),還要掌握整數(shù)指數(shù)冪的運算性質(zhì)(aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是邊長為4的正方形,點P為OA邊上任意一點(與點O、A不重合),連接CP,過點P作PM⊥CP交AB于點D,且PM=CP,過點M作MN∥OA,交BO于點N,連接ND、BM,設(shè)OP=t.

(1)求點M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長度是否隨點P的位置的變化而改變?并說明理由.
(3)當(dāng)t為何值時,四邊形BNDM的面積最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“救死扶傷”是我國的傳統(tǒng)美德,某媒體就“老人摔倒該不該扶”進行了調(diào)查,將得到的數(shù)據(jù)經(jīng)統(tǒng)計分析后繪制成如圖所示的扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖判斷下列說法,其中錯誤的一項是(
A.認(rèn)為依情況而定的占27%
B.認(rèn)為該扶的在統(tǒng)計圖中所對應(yīng)的圓心角是234°
C.認(rèn)為不該扶的占8%
D.認(rèn)為該扶的占92%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點O是△ABC的內(nèi)心,連接OB,OC,過點O作EF∥BC分別交AB,AC于點E,F(xiàn).已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD, 圍成的曲邊三角形的面積是;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點B,OA=6,sinA= ,弦BC∥OA.
(1)求AB的長;
(2)求四邊形AOCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個動點,且MN= EF,若把該正方形紙片卷成一個圓柱,使點A與點B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點間的距離是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4這四個數(shù)字中任取3個數(shù),組成無重復(fù)數(shù)字的三位數(shù).
(1)請畫出樹狀圖并寫出所有可能得到的三位數(shù);
(2)甲、乙二人玩一個游戲,游戲規(guī)則是:若組成的三位數(shù)是“傘數(shù)”,則甲勝;否則乙勝.你認(rèn)為這個游戲公平嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC的度數(shù)為(
A.55°
B.50°
C.45°
D.35°

查看答案和解析>>

同步練習(xí)冊答案