(2010•溫州)如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O與BC相切于點(diǎn)B,則AC等于( )

A.
B.
C.2
D.2
【答案】分析:首先由切線的性質(zhì)判定△ABC是直角三角形,進(jìn)而可根據(jù)勾股定理求出AC的長(zhǎng).
解答:解:∵BC是⊙O的切線,且切點(diǎn)為B,
∴∠ABC=90°,
故△ABC是等腰直角三角形;
由勾股定理,得:AC===2;故選C.
點(diǎn)評(píng):此題主要考查的是切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•溫州)如圖,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A(4,0),B(2,2).連接OB,AB.
(1)求該拋物線的解析式;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)135°得到△OA′B′,寫(xiě)出△OA′B′的邊A′B′的中點(diǎn)P的坐標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•溫州)如圖,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A(4,0),B(2,2).連接OB,AB.
(1)求該拋物線的解析式;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)135°得到△OA′B′,寫(xiě)出△OA′B′的邊A′B′的中點(diǎn)P的坐標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(15)(解析版) 題型:解答題

(2010•溫州)如圖,在正方形ABCD中,AB=4,O為對(duì)角線BD的中點(diǎn),分別以O(shè)B,OD為直徑作⊙O1,⊙O2
(1)求⊙O1的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(20)(解析版) 題型:解答題

(2010•溫州)如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)D作DH⊥AB于H,過(guò)點(diǎn)E作EF上AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線為對(duì)稱軸,線段AC經(jīng)軸對(duì)稱變換后的圖形為A′C′.
①當(dāng)t>時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB′,有公共點(diǎn)時(shí),求t的取值范圍(寫(xiě)出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•溫州)如圖,已知一商場(chǎng)自動(dòng)扶梯的長(zhǎng)l為10米,該自動(dòng)扶梯到達(dá)的高度h為6米,自動(dòng)扶梯與地面所成的角為θ,則tanθ的值等于( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案