【題目】菲爾茲獎是國際上享有崇高聲譽的一個數(shù)學獎項,每4年評選一次,頒給有卓越貢獻的年輕數(shù)學家,被視為數(shù)學界的諾貝爾獎.下面的數(shù)據(jù)是從1936年至2014年45歲以下菲爾茲獎得住獲獎時的年齡(歲):39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37 34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38 34 33 40 36 36 37 31 38 38 37 35 40 39 37
請根據(jù)以上數(shù)據(jù),解答以下問題:
(1)小彬按“組距為5”列出了如下的頻數(shù)分布表,每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖:
(2)在(1)的基礎上,小彬又畫出了如圖所示的扇形統(tǒng)計圖,圖中B組所對的圓心角的度數(shù)為 ;
(3)根據(jù)(1)中的頻數(shù)分布直方圖試描述這50位菲爾茲獎得主獲獎時的年齡的分布特征.
【答案】(1)1,3,見解析;(2)108°;(3)這56位菲爾茲獎得主獲獎時的年齡主要分布在35~40歲
【解析】
(1)根據(jù)題干中數(shù)據(jù)可得,由頻數(shù)分布表中數(shù)據(jù)可補全直方圖;
(2)用30~35歲的人數(shù)除以總數(shù)可得其百分比,用30~35歲人數(shù)所占的比例乘以360°可得;
(3)由頻數(shù)分布直方圖可得答案.
解:(1)補全頻數(shù)分布直方圖如下:
分組 | 頻數(shù) |
A:25~30 | 1 |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | 3 |
總 計 | 50 |
補全頻數(shù)分布直方圖如下:
故答案為:1、3.
(2)圖中B組所對的圓心角的度數(shù)為360°=108°,
故答案為:108°;
(3)由頻數(shù)分布直方圖知,這56位菲爾茲獎得主獲獎時的年齡主要分布在35~40歲.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線,且拋物線經(jīng)過B(1,0),C(0,3)兩點,與x軸交于點A.
(1)求拋物線的解析式;
(2)如圖1,在拋物線的對稱軸直線上找一點M,使點M到點B的距離與到點C的距離之和最小,求出點M的坐標;
(3)如圖2,點Q為直線AC上方拋物線上一點,若∠CBQ=45°,請求出點Q坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為4的等邊的邊在軸的負半軸上,反比例函數(shù)的圖象經(jīng)過邊的中點,且與邊交于點.
(1)求的值;
(2)連接,,求的面積;
(3)若直線與直線平行,且與的邊有交點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線上運動,則k的值為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點C逆時針旋轉60°,得到△MNC,連接BM,則BM的長是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某貨船以24海里/時的速度將一批重要物資從A處運往正東方向的M處,在點A處測得某島C在北偏東60°的方向上.該貨船航行30分鐘后到達B處,此時再測得該島在北偏東30°的方向上,
(1)求B到C的距離;
(2)如果在C島周圍9海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無觸礁危險?試說明理由(≈1.732).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標;
(2)x2+bx+c≤﹣5x+5的解集是 ;
(3)若點M為拋物線上一動點,連接MA、MB,當點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程kx2﹣2(k+1)x+k﹣1=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍.
(2)是否存在實數(shù)k,使此方程的兩個實數(shù)根的倒數(shù)和等于1?若存在,求出k的值:若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com