【題目】教材呈現(xiàn):如圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第96頁的部分內(nèi)容.

1)定理證明:請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出角平分線的性質(zhì)定理完整的證明過程.

2)定理應(yīng)用:如圖②,在△ABC中,ADBE分別是∠BAC、∠ABC的角平分線,AD、BE的交點(diǎn)為O,連結(jié)COAB于點(diǎn)F,求證:∠ACF=BCF

3)如圖③,在(2)的條件下,若BE=CE,∠C=30°,△ABD沿AD翻折使點(diǎn)B落在邊AC上的點(diǎn)M處,連結(jié)DM,其中AB=,則SDCM=

【答案】1)見解析;(2)見解析;(3.

【解析】

1)利用AAS可證△PEOPDO,可得PD=PE;
2)由角平分線的性質(zhì)可得,OG=OH,OH=OI,可得OG=OI,由在一個(gè)角的內(nèi)部,且到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上,可得結(jié)論;
3)由角平分線的性質(zhì)和等腰三角形的性質(zhì)可求∠BAC=90°,可求AE,BECE,BC的長,即可求BD=DM=CM的長,由三角形面積公式可求解.

證明:(1)∵OC平分∠AOB
∴∠BOC=AOC,
PDOAPEOB,
∴∠PEO=PDO=90°,且∠BOC=AOCOP=OP,
∴△PEOPDOAAS
PD=PE

2)如圖,作OGBCG,OHABH,OIACI

由(1)得,OG=OH,OH=OI
OG=OI,且OGBC,OIAC,
∴點(diǎn)O在∠ACB的平分線上,
∴∠ACF=BCF

3)如圖,連接AD

BE=CE,
∴∠C=EBC=30°,
AD、BE分別是∠BAC、∠ABC的角平分線,
∴∠ABE=CBE=30°,∠BAD=CAD
∴∠BAC=90°,且AB=,
AE=1BE=2=CE,
AC=3BC=
∵△ABD沿AD翻折使點(diǎn)B落在邊AC上的點(diǎn)M處,
AB=AM=,BD=DM,∠AMD=ABC=60°
CM=AC-AM=
∵∠MDC+MCD=AMD=60°,
∴∠MDC=MCD=30°,
MC=DM=BD=CD=BC-BD=,

SDMC==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a2bc0③ac0;當(dāng)y0時(shí),x<-1x2.其中正確的個(gè)數(shù)是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,點(diǎn)C為O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交O于點(diǎn)D,直線EC交AB的延長線于點(diǎn)P,連接AC,BC,PB:PC=1:2.

(1)求證:AC平分BAD;

(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;

(3)若AD=3,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某次斯諾克比賽中,白球位于點(diǎn) A 處,在點(diǎn) A 正北方向的點(diǎn) B 處有一顆紅球,在點(diǎn) A 正東方向 C 處有一顆黑球,在 BC 正中間的點(diǎn) D 處有一顆籃球,其中點(diǎn) C 在點(diǎn) B 的南偏東 37°方向上,選手將白球沿正北方想推進(jìn) 10cm 到達(dá)點(diǎn) E 處時(shí),測得點(diǎn)D 在點(diǎn)E 的北偏東45°方向上,求此時(shí)白球與紅球的距離有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈,cos37°≈ tan37°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

港珠澳大橋是世界上最長的跨海大橋,是被譽(yù)為“現(xiàn)代世界七大奇跡”的超級(jí)工程,它是我國從橋梁大國走向橋梁強(qiáng)國的里程碑之作.開通后從香港到珠海的車程由原來的180千米縮短到50千米,港珠澳大橋的設(shè)計(jì)時(shí)速比按原來路程行駛的平均時(shí)速多40千米,若開通后按設(shè)計(jì)時(shí)速行駛,行駛完全程時(shí)間僅為原來路程行駛完全程時(shí)間的,求港珠澳大橋的設(shè)計(jì)時(shí)速是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1;

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請(qǐng)畫出A2B2C2;

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)矩形桌子,一小球從撞擊到,反射到,又從反射到,從反射回原處,入射角與反射角相等(例如等),已知,.則小球所走的路徑的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,BC8cm,射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts).

1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;

2)①當(dāng)t  時(shí),以A、FC、E為頂點(diǎn)的四邊形是平行四邊形(直接寫出結(jié)果);

②當(dāng)t  時(shí),四邊形ACFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c經(jīng)過點(diǎn)(1,0),以下結(jié)論:①2a+b0;②a+c0;③4a+2b+c0;④b25a22ac.其中正確的是( )

A. ①②B. ③④C. ②③④D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案